Compare commits
191 commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
0e04a7076b | ||
![]() |
8e083aad4b | ||
2b92845e3e | |||
43daff1b27 | |||
d9282fb815 | |||
87b84794b4 | |||
7c985fa58e | |||
e1fc6b609d | |||
a367591e9a | |||
ef8feb63c3 | |||
4b2bbeea6f | |||
f9d3a620f4 | |||
8dbef3e29e | |||
96ad0a4740 | |||
181e06ae01 | |||
9d68e5d6c9 | |||
d1771adc48 | |||
30caf75002 | |||
030dccb326 | |||
4021d05d99 | |||
e278c6eaef | |||
4cbd2ac0fd | |||
849d19708e | |||
437c97455e | |||
fe52d78ec5 | |||
6f154cc9c6 | |||
96b3139726 | |||
![]() |
b29d567ef0 | ||
![]() |
c4f01d7dfc | ||
![]() |
c1ff0ae145 | ||
![]() |
c05bd10016 | ||
![]() |
68cc482479 | ||
![]() |
a23be7f9b5 | ||
![]() |
5087b8c6ce | ||
![]() |
dcd4465310 | ||
b9b6899764 | |||
0060d3fb86 | |||
87f6dcd870 | |||
36d1f95d65 | |||
5ac3b21331 | |||
3a17548a7d | |||
3e8ad2c5bc | |||
fe418c2a78 | |||
d68adf85f4 | |||
![]() |
896d22ac9b | ||
![]() |
b3bd75ad42 | ||
![]() |
47e21df801 | ||
![]() |
7f38544a1e | ||
![]() |
551dd5c17c | ||
226b196d15 | |||
657c1325c9 | |||
![]() |
4509a64bf5 | ||
![]() |
e663a1a596 | ||
![]() |
aaec928902 | ||
![]() |
af0cac15e6 | ||
f8943e3a9c | |||
49bb2cca13 | |||
![]() |
2a492a67de | ||
![]() |
687d1be03f | ||
![]() |
bb39f157ba | ||
![]() |
96bc223b0a | ||
cc0e9219c4 | |||
291d821d94 | |||
b2aec9c6ce | |||
4dd2cd7cd8 | |||
890f97365c | |||
e89aaf14a0 | |||
![]() |
133bcd55c2 | ||
1effbd3d85 | |||
9cb7f31cdb | |||
![]() |
2a24700f9a | ||
![]() |
5544e401a2 | ||
![]() |
8df64ef989 | ||
![]() |
4e9a5582d2 | ||
![]() |
fabc39b92a | ||
![]() |
92e418666f | ||
![]() |
bf6d7db877 | ||
![]() |
ffb57a91f4 | ||
![]() |
f8da81ad74 | ||
![]() |
6b8120848b | ||
![]() |
2ab47ac883 | ||
![]() |
f44c8ef425 | ||
![]() |
d9d0e9cdd4 | ||
![]() |
29d05befe9 | ||
![]() |
9f3b04d041 | ||
fc0e096c04 | |||
2af49373e3 | |||
396bddc8b3 | |||
fd0b48073d | |||
![]() |
0e0d9b20e5 | ||
![]() |
fe5c16361a | ||
![]() |
df0b955e4e | ||
![]() |
d48d9db1b7 | ||
![]() |
9c5eb31edf | ||
![]() |
735c7f2046 | ||
![]() |
067ae89b1d | ||
![]() |
ef3de3af3d | ||
![]() |
8daaae9831 | ||
![]() |
eaf59fc45e | ||
![]() |
21d9a2ce1b | ||
![]() |
bdba6f50e5 | ||
![]() |
d24991e994 | ||
![]() |
49a254fbef | ||
![]() |
60a4eb886f | ||
![]() |
06d420aa7e | ||
![]() |
0f48a485be | ||
![]() |
3fb6d411e7 | ||
![]() |
926c2284a5 | ||
![]() |
9d951a24c5 | ||
![]() |
67f91970d6 | ||
![]() |
9bd554b513 | ||
![]() |
300530a93f | ||
![]() |
f0c18fd77e | ||
![]() |
8d765c495d | ||
186f2138e6 | |||
8fd6919538 | |||
ea14ba9602 | |||
5ed366f093 | |||
093fc8f9cb | |||
849169be7f | |||
0a70be3e57 | |||
![]() |
1f1b8a83db | ||
![]() |
1d3920fce1 | ||
![]() |
ba77752329 | ||
![]() |
48adb34946 | ||
![]() |
d053f93100 | ||
fa80294c5d | |||
761e96f414 | |||
5ac2bf1c40 | |||
823f61d89f | |||
15f8a9c687 | |||
c1a8e9d2e1 | |||
c5de86339f | |||
bccf6eb860 | |||
8105b5c410 | |||
8f8f428562 | |||
5918fdf47e | |||
![]() |
26e3c1c42a | ||
![]() |
c8e84ef93c | ||
![]() |
2c47d78ad6 | ||
![]() |
ea1fba8ae9 | ||
881b2e3825 | |||
df5c6bf0b1 | |||
20bf38a3ca | |||
5b925e3fa1 | |||
133968dd23 | |||
ab1bd8eef8 | |||
![]() |
4396786701 | ||
![]() |
932662d5d9 | ||
![]() |
0c83044d72 | ||
![]() |
5996c45526 | ||
![]() |
02e6c9e025 | ||
![]() |
916e0bcd75 | ||
![]() |
f483d63f01 | ||
0746e9a354 | |||
4bc08e1897 | |||
707483d401 | |||
2f4ea2c78b | |||
cf2726be8d | |||
0e5b82b162 | |||
2e2e41cbe6 | |||
6daa275ac8 | |||
399c97fa82 | |||
8d92f19d74 | |||
10f339c5b6 | |||
82e21196c2 | |||
e7a26e6bd6 | |||
c25bac311c | |||
aca7ebaf1e | |||
733e86c611 | |||
435c0e037e | |||
1258ac263c | |||
db911cff36 | |||
286ceeed39 | |||
fecac84977 | |||
cd3b4981c7 | |||
c24cc7c9b0 | |||
64bcf8e9c1 | |||
d6a96430f0 | |||
55ccc2bc1d | |||
4134fbdada | |||
76f8c32dad | |||
![]() |
1997e8bc12 | ||
![]() |
7cc6435ea3 | ||
![]() |
af224831e4 | ||
e444c8408f | |||
0e254c5ac3 | |||
7f29fe0347 | |||
2393cc5103 | |||
f83af1241b | |||
ee24f8093e |
17 changed files with 9000 additions and 1282 deletions
4
Makefile
4
Makefile
|
@ -16,12 +16,12 @@ uninstall: $(COQMAKEFILE)
|
||||||
$(MAKE) -f $(COQMAKEFILE) uninstall
|
$(MAKE) -f $(COQMAKEFILE) uninstall
|
||||||
|
|
||||||
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
||||||
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
|
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
|
||||||
|
|
||||||
.PHONY: clean FORCE
|
.PHONY: clean FORCE
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
||||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
|
||||||
|
|
||||||
FORCE:
|
FORCE:
|
||||||
|
|
|
@ -16,4 +16,7 @@ PPair : PTm -> PTm -> PTm
|
||||||
PProj : PTag -> PTm -> PTm
|
PProj : PTag -> PTm -> PTm
|
||||||
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
||||||
PUniv : nat -> PTm
|
PUniv : nat -> PTm
|
||||||
PBot : PTm
|
PNat : PTm
|
||||||
|
PZero : PTm
|
||||||
|
PSuc : PTm -> PTm
|
||||||
|
PInd : (bind PTm in PTm) -> PTm -> PTm -> (bind PTm,PTm in PTm) -> PTm
|
|
@ -1,419 +0,0 @@
|
||||||
(** * Autosubst Header for Scoped Syntax
|
|
||||||
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
|
|
||||||
|
|
||||||
Version: December 11, 2019.
|
|
||||||
*)
|
|
||||||
Require Import core.
|
|
||||||
Require Import Setoid Morphisms Relation_Definitions.
|
|
||||||
|
|
||||||
Set Implicit Arguments.
|
|
||||||
Unset Strict Implicit.
|
|
||||||
|
|
||||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
|
||||||
match p with eq_refl => eq_refl end.
|
|
||||||
|
|
||||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
|
||||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
|
||||||
|
|
||||||
(** ** Primitives of the Sigma Calculus
|
|
||||||
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
|
|
||||||
*)
|
|
||||||
|
|
||||||
Fixpoint fin (n : nat) : Type :=
|
|
||||||
match n with
|
|
||||||
| 0 => False
|
|
||||||
| S m => option (fin m)
|
|
||||||
end.
|
|
||||||
|
|
||||||
(** Renamings and Injective Renamings
|
|
||||||
_Renamings_ are mappings between finite types.
|
|
||||||
*)
|
|
||||||
Definition ren (m n : nat) : Type := fin m -> fin n.
|
|
||||||
|
|
||||||
Definition id {X} := @Datatypes.id X.
|
|
||||||
|
|
||||||
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
|
|
||||||
|
|
||||||
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
|
|
||||||
Definition var_zero {n : nat} : fin (S n) := None.
|
|
||||||
|
|
||||||
Definition null {T} (i : fin 0) : T := match i with end.
|
|
||||||
|
|
||||||
Definition shift {n : nat} : ren n (S n) :=
|
|
||||||
Some.
|
|
||||||
|
|
||||||
(** Extension of Finite Mappings
|
|
||||||
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
|
|
||||||
*)
|
|
||||||
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
|
|
||||||
match m with
|
|
||||||
| None => x
|
|
||||||
| Some i => f i
|
|
||||||
end.
|
|
||||||
|
|
||||||
#[ export ]
|
|
||||||
Hint Opaque scons : rewrite.
|
|
||||||
|
|
||||||
(** ** Type Class Instances for Notation *)
|
|
||||||
|
|
||||||
(** *** Type classes for renamings. *)
|
|
||||||
|
|
||||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
|
||||||
ren1 : X1 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
|
||||||
ren2 : X1 -> X2 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
|
||||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
|
||||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
|
||||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
|
||||||
|
|
||||||
Module RenNotations.
|
|
||||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
|
||||||
|
|
||||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
|
||||||
End RenNotations.
|
|
||||||
|
|
||||||
(** *** Type Classes for Substiution *)
|
|
||||||
|
|
||||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
|
||||||
subst1 : X1 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
|
||||||
subst2 : X1 -> X2 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
|
||||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
|
||||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
|
||||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
|
||||||
|
|
||||||
Module SubstNotations.
|
|
||||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
|
||||||
End SubstNotations.
|
|
||||||
|
|
||||||
(** ** Type Class for Variables *)
|
|
||||||
Class Var X Y :=
|
|
||||||
ids : X -> Y.
|
|
||||||
|
|
||||||
|
|
||||||
(** ** Proofs for substitution primitives *)
|
|
||||||
|
|
||||||
(** Forward Function Composition
|
|
||||||
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
|
|
||||||
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
|
|
||||||
|
|
||||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
|
||||||
|
|
||||||
Module CombineNotations.
|
|
||||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
|
||||||
|
|
||||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
|
||||||
|
|
||||||
#[ global ]
|
|
||||||
Open Scope fscope.
|
|
||||||
#[ global ]
|
|
||||||
Open Scope subst_scope.
|
|
||||||
End CombineNotations.
|
|
||||||
|
|
||||||
Import CombineNotations.
|
|
||||||
|
|
||||||
|
|
||||||
(** Generic lifting operation for renamings *)
|
|
||||||
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
|
|
||||||
var_zero .: xi >> shift.
|
|
||||||
|
|
||||||
(** Generic proof that lifting of renamings composes. *)
|
|
||||||
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
|
||||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
|
||||||
Proof.
|
|
||||||
intros [x|].
|
|
||||||
- cbn. unfold funcomp. now rewrite <- E.
|
|
||||||
- reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Arguments up_ren_ren {k l m} xi zeta rho E.
|
|
||||||
|
|
||||||
Lemma fin_eta {X} (f g : fin 0 -> X) :
|
|
||||||
pointwise_relation _ eq f g.
|
|
||||||
Proof. intros []. Qed.
|
|
||||||
|
|
||||||
(** Eta laws *)
|
|
||||||
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
|
|
||||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
Lemma scons_eta_id' {n : nat} :
|
|
||||||
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
|
|
||||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
|
|
||||||
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
|
|
||||||
(* Proof. *)
|
|
||||||
(* reflexivity. *)
|
|
||||||
(* Qed. *)
|
|
||||||
|
|
||||||
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
|
|
||||||
(* (scons s f (shift x)) = f x. *)
|
|
||||||
(* Proof. *)
|
|
||||||
(* reflexivity. *)
|
|
||||||
(* Qed. *)
|
|
||||||
|
|
||||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
|
||||||
#[export] Instance scons_morphism {X: Type} {n:nat} :
|
|
||||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
|
|
||||||
Proof.
|
|
||||||
intros t t' -> sigma tau H.
|
|
||||||
intros [x|].
|
|
||||||
cbn. apply H.
|
|
||||||
reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
|
|
||||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
|
|
||||||
Proof.
|
|
||||||
intros ? t -> sigma tau H ? x ->.
|
|
||||||
destruct x as [x|].
|
|
||||||
cbn. apply H.
|
|
||||||
reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(** ** Variadic Substitution Primitives *)
|
|
||||||
|
|
||||||
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
|
|
||||||
fun n => match p with
|
|
||||||
| 0 => n
|
|
||||||
| S p => Some (shift_p p n)
|
|
||||||
end.
|
|
||||||
|
|
||||||
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
|
|
||||||
Proof.
|
|
||||||
destruct m.
|
|
||||||
- intros n f g. exact g.
|
|
||||||
- intros n f g. cbn. apply scons.
|
|
||||||
+ exact (f var_zero).
|
|
||||||
+ apply scons_p.
|
|
||||||
* intros z. exact (f (Some z)).
|
|
||||||
* exact g.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
#[export] Hint Opaque scons_p : rewrite.
|
|
||||||
|
|
||||||
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
|
|
||||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
|
|
||||||
Proof.
|
|
||||||
intros sigma sigma' Hsigma tau tau' Htau.
|
|
||||||
intros x.
|
|
||||||
induction m.
|
|
||||||
- cbn. apply Htau.
|
|
||||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
|
||||||
destruct x as [x|].
|
|
||||||
+ cbn. apply IHm.
|
|
||||||
intros ?. apply Hsigma.
|
|
||||||
+ cbn. apply Hsigma.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
|
|
||||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
|
|
||||||
Proof.
|
|
||||||
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
|
|
||||||
induction m.
|
|
||||||
- cbn. apply Htau.
|
|
||||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
|
||||||
destruct x as [x|].
|
|
||||||
+ cbn. apply IHm.
|
|
||||||
intros ?. apply Hsigma.
|
|
||||||
+ cbn. apply Hsigma.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
|
|
||||||
Proof.
|
|
||||||
induction m.
|
|
||||||
- intros [].
|
|
||||||
- intros [x|].
|
|
||||||
+ exact (shift_p 1 (IHm x)).
|
|
||||||
+ exact var_zero.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
|
|
||||||
(scons_p f g) (zero_p z) = f z.
|
|
||||||
Proof.
|
|
||||||
induction m.
|
|
||||||
- inversion z.
|
|
||||||
- destruct z.
|
|
||||||
+ simpl. simpl. now rewrite IHm.
|
|
||||||
+ reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
|
|
||||||
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
|
|
||||||
Proof.
|
|
||||||
intros z.
|
|
||||||
unfold funcomp.
|
|
||||||
induction m.
|
|
||||||
- inversion z.
|
|
||||||
- destruct z.
|
|
||||||
+ simpl. now rewrite IHm.
|
|
||||||
+ reflexivity.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
|
|
||||||
scons_p f g (shift_p m z) = g z.
|
|
||||||
Proof. induction m; cbn; eauto. Qed.
|
|
||||||
|
|
||||||
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
|
|
||||||
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
|
|
||||||
Proof. intros z. induction m; cbn; eauto. Qed.
|
|
||||||
|
|
||||||
Lemma destruct_fin {m n} (x : fin (m + n)):
|
|
||||||
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
|
|
||||||
Proof.
|
|
||||||
induction m; simpl in *.
|
|
||||||
- right. eauto.
|
|
||||||
- destruct x as [x|].
|
|
||||||
+ destruct (IHm x) as [[x' ->] |[x' ->]].
|
|
||||||
* left. now exists (Some x').
|
|
||||||
* right. eauto.
|
|
||||||
+ left. exists None. eauto.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
|
|
||||||
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
|
|
||||||
Proof.
|
|
||||||
intros x.
|
|
||||||
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
|
|
||||||
(* TODO better way to solve this? *)
|
|
||||||
- revert x'.
|
|
||||||
apply pointwise_forall.
|
|
||||||
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
|
|
||||||
now setoid_rewrite scons_p_head_pointwise.
|
|
||||||
- revert x'.
|
|
||||||
apply pointwise_forall.
|
|
||||||
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
|
|
||||||
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
|
|
||||||
now rewrite !scons_p_tail_pointwise.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
|
|
||||||
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
|
|
||||||
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
|
|
||||||
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
|
|
||||||
|
|
||||||
(** Generic n-ary lifting operation. *)
|
|
||||||
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
|
|
||||||
scons_p (zero_p ) (xi >> shift_p _).
|
|
||||||
|
|
||||||
Arguments upRen_p p {m n} xi.
|
|
||||||
|
|
||||||
(** Generic proof for composition of n-ary lifting. *)
|
|
||||||
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
|
||||||
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
|
|
||||||
Proof.
|
|
||||||
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
|
|
||||||
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
|
|
||||||
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
|
|
||||||
now rewrite <- E.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
|
|
||||||
Arguments zero_p m {n}.
|
|
||||||
Arguments scons_p {X} m {n} f g.
|
|
||||||
|
|
||||||
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
|
|
||||||
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
|
|
||||||
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
|
|
||||||
Proof.
|
|
||||||
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
|
|
||||||
- rewrite scons_p_head'. eauto.
|
|
||||||
- rewrite scons_p_tail'. eauto.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Arguments scons_p_eta {X} {m n} {f g} h {z}.
|
|
||||||
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
|
|
||||||
|
|
||||||
(** ** Notations for Scoped Syntax *)
|
|
||||||
|
|
||||||
Module ScopedNotations.
|
|
||||||
Include RenNotations.
|
|
||||||
Include SubstNotations.
|
|
||||||
Include CombineNotations.
|
|
||||||
|
|
||||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
|
||||||
|
|
||||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
|
||||||
|
|
||||||
Notation "↑" := (shift) : subst_scope.
|
|
||||||
|
|
||||||
#[global]
|
|
||||||
Open Scope fscope.
|
|
||||||
#[global]
|
|
||||||
Open Scope subst_scope.
|
|
||||||
End ScopedNotations.
|
|
||||||
|
|
||||||
|
|
||||||
(** ** Tactics for Scoped Syntax *)
|
|
||||||
|
|
||||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
|
||||||
| [|- forall (i : fin 0), _] => intros []; t
|
|
||||||
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
|
|
||||||
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
|
|
||||||
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
|
|
||||||
| [|- forall (i : fin (S _)), _] => intros [?|]; t
|
|
||||||
end).
|
|
||||||
|
|
||||||
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
|
|
||||||
|
|
||||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
|
||||||
Ltac fsimpl :=
|
|
||||||
repeat match goal with
|
|
||||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
|
||||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
|
||||||
| [|- context [id ?s]] => change (id s) with s
|
|
||||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
|
|
||||||
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
|
|
||||||
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
|
|
||||||
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
|
|
||||||
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
|
|
||||||
| [|- context[idren >> ?f]] => change (idren >> f) with f
|
|
||||||
| [|- context[?f >> idren]] => change (f >> idren) with f
|
|
||||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
|
||||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
|
|
||||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
|
|
||||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
|
||||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
|
||||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
|
||||||
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
|
|
||||||
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
|
||||||
(* | _ => progress autorewrite with FunctorInstances *)
|
|
||||||
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
|
|
||||||
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
|
|
||||||
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
|
|
||||||
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
|
|
||||||
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
|
|
||||||
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
|
|
||||||
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
|
|
||||||
end.
|
|
File diff suppressed because it is too large
Load diff
213
theories/Autosubst2/unscoped.v
Normal file
213
theories/Autosubst2/unscoped.v
Normal file
|
@ -0,0 +1,213 @@
|
||||||
|
(** * Autosubst Header for Unnamed Syntax
|
||||||
|
|
||||||
|
Version: December 11, 2019.
|
||||||
|
*)
|
||||||
|
|
||||||
|
(* Adrian:
|
||||||
|
I changed this library a bit to work better with my generated code.
|
||||||
|
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
|
||||||
|
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
|
||||||
|
Require Import core.
|
||||||
|
Require Import Setoid Morphisms Relation_Definitions.
|
||||||
|
|
||||||
|
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||||
|
match p with eq_refl => eq_refl end.
|
||||||
|
|
||||||
|
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||||
|
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||||
|
|
||||||
|
(** ** Primitives of the Sigma Calculus. *)
|
||||||
|
|
||||||
|
Definition shift := S.
|
||||||
|
|
||||||
|
Definition var_zero := 0.
|
||||||
|
|
||||||
|
Definition id {X} := @Datatypes.id X.
|
||||||
|
|
||||||
|
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
|
||||||
|
fun n => match n with
|
||||||
|
| 0 => x
|
||||||
|
| S n => xi n
|
||||||
|
end.
|
||||||
|
|
||||||
|
#[ export ]
|
||||||
|
Hint Opaque scons : rewrite.
|
||||||
|
|
||||||
|
(** ** Type Class Instances for Notation
|
||||||
|
Required to make notation work. *)
|
||||||
|
|
||||||
|
(** *** Type classes for renamings. *)
|
||||||
|
|
||||||
|
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||||
|
ren1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||||
|
ren2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||||
|
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||||
|
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||||
|
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module RenNotations.
|
||||||
|
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||||
|
|
||||||
|
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||||
|
End RenNotations.
|
||||||
|
|
||||||
|
(** *** Type Classes for Substiution *)
|
||||||
|
|
||||||
|
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||||
|
subst1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||||
|
subst2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||||
|
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||||
|
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||||
|
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module SubstNotations.
|
||||||
|
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||||
|
End SubstNotations.
|
||||||
|
|
||||||
|
(** *** Type Class for Variables *)
|
||||||
|
|
||||||
|
Class Var X Y :=
|
||||||
|
ids : X -> Y.
|
||||||
|
|
||||||
|
#[export] Instance idsRen : Var nat nat := id.
|
||||||
|
|
||||||
|
(** ** Proofs for the substitution primitives. *)
|
||||||
|
|
||||||
|
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||||
|
|
||||||
|
Module CombineNotations.
|
||||||
|
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||||
|
|
||||||
|
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||||
|
|
||||||
|
#[ global ]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[ global ]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End CombineNotations.
|
||||||
|
|
||||||
|
Import CombineNotations.
|
||||||
|
|
||||||
|
|
||||||
|
(** A generic lifting of a renaming. *)
|
||||||
|
Definition up_ren (xi : nat -> nat) :=
|
||||||
|
0 .: (xi >> S).
|
||||||
|
|
||||||
|
(** A generic proof that lifting of renamings composes. *)
|
||||||
|
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
|
||||||
|
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||||
|
Proof.
|
||||||
|
intros [|x].
|
||||||
|
- reflexivity.
|
||||||
|
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** Eta laws. *)
|
||||||
|
Lemma scons_eta' {T} (f : nat -> T) :
|
||||||
|
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_eta_id' :
|
||||||
|
pointwise_relation _ eq (var_zero .: shift) id.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
|
||||||
|
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||||
|
#[export] Instance scons_morphism {X: Type} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
|
||||||
|
Proof.
|
||||||
|
intros ? t -> sigma tau H.
|
||||||
|
intros [|x].
|
||||||
|
cbn. reflexivity.
|
||||||
|
apply H.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
#[export] Instance scons_morphism2 {X: Type} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
|
||||||
|
Proof.
|
||||||
|
intros ? t -> sigma tau H ? x ->.
|
||||||
|
destruct x as [|x].
|
||||||
|
cbn. reflexivity.
|
||||||
|
apply H.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** ** Generic lifting of an allfv predicate *)
|
||||||
|
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
|
||||||
|
|
||||||
|
(** ** Notations for unscoped syntax *)
|
||||||
|
Module UnscopedNotations.
|
||||||
|
Include RenNotations.
|
||||||
|
Include SubstNotations.
|
||||||
|
Include CombineNotations.
|
||||||
|
|
||||||
|
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||||
|
|
||||||
|
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||||
|
|
||||||
|
Notation "↑" := (shift) : subst_scope.
|
||||||
|
|
||||||
|
#[global]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[global]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End UnscopedNotations.
|
||||||
|
|
||||||
|
(** ** Tactics for unscoped syntax *)
|
||||||
|
|
||||||
|
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
|
||||||
|
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||||
|
| [|- forall (i : nat), _] => intros []; t
|
||||||
|
end).
|
||||||
|
|
||||||
|
|
||||||
|
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||||
|
Ltac fsimpl :=
|
||||||
|
repeat match goal with
|
||||||
|
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||||
|
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||||
|
| [|- context [id ?s]] => change (id s) with s
|
||||||
|
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
|
||||||
|
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
|
||||||
|
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
|
||||||
|
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
|
||||||
|
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||||
|
| [|- context[var_zero]] => change var_zero with 0
|
||||||
|
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
|
||||||
|
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
|
||||||
|
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||||
|
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||||
|
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
|
||||||
|
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||||
|
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||||
|
end.
|
264
theories/admissible.v
Normal file
264
theories/admissible.v
Normal file
|
@ -0,0 +1,264 @@
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
Require Import ssreflect.
|
||||||
|
Require Import Psatz.
|
||||||
|
Require Import Coq.Logic.FunctionalExtensionality.
|
||||||
|
|
||||||
|
Derive Inversion wff_inv with (forall Γ, ⊢ Γ) Sort Prop.
|
||||||
|
|
||||||
|
Lemma T_Abs Γ (a : PTm ) A B :
|
||||||
|
(cons A Γ) ⊢ a ∈ B ->
|
||||||
|
Γ ⊢ PAbs a ∈ PBind PPi A B.
|
||||||
|
Proof.
|
||||||
|
move => ha.
|
||||||
|
have [i hB] : exists i, (cons A Γ) ⊢ B ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
have hΓ : ⊢ (cons A Γ) by sfirstorder use:wff_mutual.
|
||||||
|
hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma App_Inv Γ (b a : PTm) U :
|
||||||
|
Γ ⊢ PApp b a ∈ U ->
|
||||||
|
exists A B, Γ ⊢ b ∈ PBind PPi A B /\ Γ ⊢ a ∈ A /\ Γ ⊢ subst_PTm (scons a VarPTm) B ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PApp b a) => u hu.
|
||||||
|
move : b a E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
|
||||||
|
exists A,B.
|
||||||
|
repeat split => //=.
|
||||||
|
have [i] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
hauto lq:on use:bind_inst, E_Refl.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma Abs_Inv Γ (a : PTm) U :
|
||||||
|
Γ ⊢ PAbs a ∈ U ->
|
||||||
|
exists A B, (cons A Γ) ⊢ a ∈ B /\ Γ ⊢ PBind PPi A B ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PAbs a) => u hu.
|
||||||
|
move : a E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
|
||||||
|
exists A, B. repeat split => //=.
|
||||||
|
hauto lq:on use:E_Refl, Su_Eq.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
|
||||||
|
Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A.
|
||||||
|
Proof.
|
||||||
|
move => a b Γ A ha.
|
||||||
|
move /App_Inv : ha.
|
||||||
|
move => [A0][B0][ha][hb]hS.
|
||||||
|
move /Abs_Inv : ha => [A1][B1][ha]hS0.
|
||||||
|
have hb' := hb.
|
||||||
|
move /E_Refl in hb.
|
||||||
|
have hS1 : Γ ⊢ A0 ≲ A1 by sfirstorder use:Su_Pi_Proj1.
|
||||||
|
have [i hPi] : exists i, Γ ⊢ PBind PPi A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||||
|
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
|
||||||
|
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
|
||||||
|
move => h.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_AppAbs; eauto.
|
||||||
|
eauto using T_Conv.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma T_Eta Γ A a B :
|
||||||
|
A :: Γ ⊢ a ∈ B ->
|
||||||
|
A :: Γ ⊢ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) ∈ B.
|
||||||
|
Proof.
|
||||||
|
move => ha.
|
||||||
|
have hΓ' : ⊢ A :: Γ by sfirstorder use:wff_mutual.
|
||||||
|
have [i hA] : exists i, Γ ⊢ A ∈ PUniv i by hauto lq:on inv:Wff.
|
||||||
|
have hΓ : ⊢ Γ by hauto lq:on inv:Wff.
|
||||||
|
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||||
|
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
|
||||||
|
econstructor; eauto. sauto l:on use:renaming.
|
||||||
|
apply T_Var => //.
|
||||||
|
by constructor.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||||
|
(cons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||||||
|
Proof.
|
||||||
|
move => h0 h1.
|
||||||
|
have : Γ ⊢ A0 ∈ PUniv i by hauto l:on use:regularity.
|
||||||
|
have : ⊢ Γ by sfirstorder use:wff_mutual.
|
||||||
|
move : E_Bind h0 h1; repeat move/[apply].
|
||||||
|
firstorder.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_App Γ (b0 b1 a0 a1 : PTm ) A B :
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||||
|
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have [i] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by hauto l:on use:regularity.
|
||||||
|
move : E_App h. by repeat move/[apply].
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_Proj2 Γ (a b : PTm) A B :
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have [i] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by hauto l:on use:regularity.
|
||||||
|
move : E_Proj2 h; by repeat move/[apply].
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_FunExt Γ (a b : PTm) A B :
|
||||||
|
Γ ⊢ a ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ b ∈ PBind PPi A B ->
|
||||||
|
A :: Γ ⊢ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PPi A B.
|
||||||
|
Proof.
|
||||||
|
hauto l:on use:regularity, E_FunExt.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_PairExt Γ (a b : PTm) A B :
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A ->
|
||||||
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B. hauto l:on use:regularity, E_PairExt. Qed.
|
||||||
|
|
||||||
|
Lemma renaming_comp Γ Δ Ξ ξ0 ξ1 :
|
||||||
|
renaming_ok Γ Δ ξ0 -> renaming_ok Δ Ξ ξ1 ->
|
||||||
|
renaming_ok Γ Ξ (funcomp ξ0 ξ1).
|
||||||
|
rewrite /renaming_ok => h0 h1 i A.
|
||||||
|
move => {}/h1 {}/h0.
|
||||||
|
by asimpl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_AppEta Γ (b : PTm) A B :
|
||||||
|
Γ ⊢ b ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have [i hPi] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
have [j [hA hB]] : exists i, Γ ⊢ A ∈ PUniv i /\ A :: Γ ⊢ B ∈ PUniv i by hauto lq:on use:Bind_Inv.
|
||||||
|
have {i} {}hPi : Γ ⊢ PBind PPi A B ∈ PUniv j by sfirstorder use:T_Bind, wff_mutual.
|
||||||
|
have hΓ : ⊢ A :: Γ by hauto lq:on use:Bind_Inv, Wff_Cons'.
|
||||||
|
have hΓ' : ⊢ ren_PTm shift A :: A :: Γ by sauto lq:on use:renaming, renaming_shift inv:Wff.
|
||||||
|
apply E_FunExt; eauto.
|
||||||
|
apply T_Abs.
|
||||||
|
eapply T_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||||
|
change (PBind _ _ _) with (ren_PTm shift (PBind PPi A B)).
|
||||||
|
|
||||||
|
eapply renaming; eauto.
|
||||||
|
apply renaming_shift.
|
||||||
|
constructor => //.
|
||||||
|
by constructor.
|
||||||
|
|
||||||
|
apply : E_Transitive. simpl.
|
||||||
|
apply E_AppAbs' with (i := j)(A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B); eauto.
|
||||||
|
by asimpl; rewrite subst_scons_id.
|
||||||
|
hauto q:on use:renaming, renaming_shift.
|
||||||
|
constructor => //.
|
||||||
|
by constructor.
|
||||||
|
asimpl.
|
||||||
|
eapply T_App' with (A := ren_PTm shift (ren_PTm shift A)) (B := ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B)); cycle 2.
|
||||||
|
constructor. econstructor; eauto. sauto lq:on use:renaming, renaming_shift.
|
||||||
|
by constructor. asimpl. substify. by asimpl.
|
||||||
|
have -> : PBind PPi (ren_PTm shift (ren_PTm shift A)) (ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B))= (ren_PTm (funcomp shift shift) (PBind PPi A B)) by asimpl.
|
||||||
|
eapply renaming; eauto. by eauto using renaming_shift, renaming_comp.
|
||||||
|
asimpl. renamify.
|
||||||
|
eapply E_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||||
|
hauto q:on use:renaming, renaming_shift.
|
||||||
|
sauto lq:on use:renaming, renaming_shift, E_Refl.
|
||||||
|
constructor. constructor=>//. constructor.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Proj1_Inv Γ (a : PTm ) U :
|
||||||
|
Γ ⊢ PProj PL a ∈ U ->
|
||||||
|
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ A ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PProj PL a) => u hu.
|
||||||
|
move :a E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ a A B ha _ a0 [*]. subst.
|
||||||
|
exists A, B. split => //=.
|
||||||
|
eapply regularity in ha.
|
||||||
|
move : ha => [i].
|
||||||
|
move /Bind_Inv => [j][h _].
|
||||||
|
by move /E_Refl /Su_Eq in h.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Proj2_Inv Γ (a : PTm) U :
|
||||||
|
Γ ⊢ PProj PR a ∈ U ->
|
||||||
|
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ subst_PTm (scons (PProj PL a) VarPTm) B ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PProj PR a) => u hu.
|
||||||
|
move :a E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ a A B ha _ a0 [*]. subst.
|
||||||
|
exists A, B. split => //=.
|
||||||
|
have ha' := ha.
|
||||||
|
eapply regularity in ha.
|
||||||
|
move : ha => [i ha].
|
||||||
|
move /T_Proj1 in ha'.
|
||||||
|
apply : bind_inst; eauto.
|
||||||
|
apply : E_Refl ha'.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Pair_Inv Γ (a b : PTm ) U :
|
||||||
|
Γ ⊢ PPair a b ∈ U ->
|
||||||
|
exists A B, Γ ⊢ a ∈ A /\
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B /\
|
||||||
|
Γ ⊢ PBind PSig A B ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PPair a b) => u hu.
|
||||||
|
move : a b E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
|
||||||
|
exists A,B. repeat split => //=.
|
||||||
|
move /E_Refl /Su_Eq : hS. apply.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_ProjPair1 : forall (a b : PTm) Γ (A : PTm),
|
||||||
|
Γ ⊢ PProj PL (PPair a b) ∈ A -> Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A.
|
||||||
|
Proof.
|
||||||
|
move => a b Γ A.
|
||||||
|
move /Proj1_Inv. move => [A0][B0][hab]hA0.
|
||||||
|
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
|
||||||
|
have [i ?] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||||
|
move /Su_Sig_Proj1 in hS.
|
||||||
|
have {hA0} {}hS : Γ ⊢ A1 ≲ A by eauto using Su_Transitive.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_ProjPair1; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_ProjPair2 : forall (a b : PTm) Γ (A : PTm),
|
||||||
|
Γ ⊢ PProj PR (PPair a b) ∈ A -> Γ ⊢ PProj PR (PPair a b) ≡ b ∈ A.
|
||||||
|
Proof.
|
||||||
|
move => a b Γ A. move /Proj2_Inv.
|
||||||
|
move => [A0][B0][ha]h.
|
||||||
|
have hr := ha.
|
||||||
|
move /Pair_Inv : ha => [A1][B1][ha][hb]hU.
|
||||||
|
have [i hSig] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
have /E_Symmetric : Γ ⊢ (PProj PL (PPair a b)) ≡ a ∈ A1 by eauto using E_ProjPair1 with wt.
|
||||||
|
move /Su_Sig_Proj2 : hU. repeat move/[apply]. move => hB.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_ProjPair2; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma E_PairEta Γ a A B :
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PPair (PProj PL a) (PProj PR a) ≡ a ∈ PBind PSig A B.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have [i hSig] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by hauto use:regularity.
|
||||||
|
apply E_PairExt => //.
|
||||||
|
eapply T_Pair; eauto with wt.
|
||||||
|
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
|
||||||
|
by eauto with wt.
|
||||||
|
apply E_ProjPair2.
|
||||||
|
apply : T_Proj2; eauto with wt.
|
||||||
|
Qed.
|
1893
theories/algorithmic.v
Normal file
1893
theories/algorithmic.v
Normal file
File diff suppressed because it is too large
Load diff
601
theories/common.v
Normal file
601
theories/common.v
Normal file
|
@ -0,0 +1,601 @@
|
||||||
|
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
|
||||||
|
From Equations Require Import Equations.
|
||||||
|
Derive NoConfusion for nat PTag BTag PTm.
|
||||||
|
Derive EqDec for BTag PTag PTm.
|
||||||
|
From Ltac2 Require Ltac2.
|
||||||
|
Import Ltac2.Notations.
|
||||||
|
Import Ltac2.Control.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
From stdpp Require Import relations (rtc(..)).
|
||||||
|
|
||||||
|
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
||||||
|
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
||||||
|
| there i Γ A B :
|
||||||
|
lookup i Γ A ->
|
||||||
|
lookup (S i) (cons B Γ) (ren_PTm shift A).
|
||||||
|
|
||||||
|
Lemma lookup_deter i Γ A B :
|
||||||
|
lookup i Γ A ->
|
||||||
|
lookup i Γ B ->
|
||||||
|
A = B.
|
||||||
|
Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed.
|
||||||
|
|
||||||
|
Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U.
|
||||||
|
Proof. move => ->. apply here. Qed.
|
||||||
|
|
||||||
|
Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A ->
|
||||||
|
lookup (S i) (cons B Γ) U.
|
||||||
|
Proof. move => ->. apply there. Qed.
|
||||||
|
|
||||||
|
Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A).
|
||||||
|
|
||||||
|
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
|
||||||
|
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
|
||||||
|
|
||||||
|
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
|
||||||
|
|
||||||
|
Lemma up_injective (ξ : nat -> nat) :
|
||||||
|
ren_inj ξ ->
|
||||||
|
ren_inj (upRen_PTm_PTm ξ).
|
||||||
|
Proof.
|
||||||
|
move => h i j.
|
||||||
|
case : i => //=; case : j => //=.
|
||||||
|
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Local Ltac2 rec solve_anti_ren () :=
|
||||||
|
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||||||
|
intro $x;
|
||||||
|
lazy_match! Constr.type (Control.hyp x) with
|
||||||
|
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
|
||||||
|
| _ => solve_anti_ren ()
|
||||||
|
end.
|
||||||
|
|
||||||
|
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||||||
|
|
||||||
|
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
|
||||||
|
ren_inj ξ ->
|
||||||
|
ren_PTm ξ a = ren_PTm ξ b ->
|
||||||
|
a = b.
|
||||||
|
Proof.
|
||||||
|
move : ξ b. elim : a => //; try solve_anti_ren.
|
||||||
|
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Inductive HF : Set :=
|
||||||
|
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
||||||
|
|
||||||
|
Definition ishf (a : PTm) :=
|
||||||
|
match a with
|
||||||
|
| PPair _ _ => true
|
||||||
|
| PAbs _ => true
|
||||||
|
| PUniv _ => true
|
||||||
|
| PBind _ _ _ => true
|
||||||
|
| PNat => true
|
||||||
|
| PSuc _ => true
|
||||||
|
| PZero => true
|
||||||
|
| _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition toHF (a : PTm) :=
|
||||||
|
match a with
|
||||||
|
| PPair _ _ => H_Pair
|
||||||
|
| PAbs _ => H_Abs
|
||||||
|
| PUniv _ => H_Univ
|
||||||
|
| PBind p _ _ => H_Bind p
|
||||||
|
| PNat => H_Nat
|
||||||
|
| PSuc _ => H_Suc
|
||||||
|
| PZero => H_Zero
|
||||||
|
| _ => H_Bot
|
||||||
|
end.
|
||||||
|
|
||||||
|
Fixpoint ishne (a : PTm) :=
|
||||||
|
match a with
|
||||||
|
| VarPTm _ => true
|
||||||
|
| PApp a _ => ishne a
|
||||||
|
| PProj _ a => ishne a
|
||||||
|
| PInd _ n _ _ => ishne n
|
||||||
|
| _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
|
||||||
|
|
||||||
|
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
|
||||||
|
|
||||||
|
Definition ispair (a : PTm) :=
|
||||||
|
match a with
|
||||||
|
| PPair _ _ => true
|
||||||
|
| _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition isnat (a : PTm) := if a is PNat then true else false.
|
||||||
|
|
||||||
|
Definition iszero (a : PTm) := if a is PZero then true else false.
|
||||||
|
|
||||||
|
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
|
||||||
|
|
||||||
|
Definition isabs (a : PTm) :=
|
||||||
|
match a with
|
||||||
|
| PAbs _ => true
|
||||||
|
| _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition tm_nonconf (a b : PTm) : bool :=
|
||||||
|
match a, b with
|
||||||
|
| PAbs _, _ => (~~ ishf b) || isabs b
|
||||||
|
| _, PAbs _ => ~~ ishf a
|
||||||
|
| VarPTm _, VarPTm _ => true
|
||||||
|
| PPair _ _, _ => (~~ ishf b) || ispair b
|
||||||
|
| _, PPair _ _ => ~~ ishf a
|
||||||
|
| PZero, PZero => true
|
||||||
|
| PSuc _, PSuc _ => true
|
||||||
|
| PApp _ _, PApp _ _ => true
|
||||||
|
| PProj _ _, PProj _ _ => true
|
||||||
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||||
|
| PNat, PNat => true
|
||||||
|
| PUniv _, PUniv _ => true
|
||||||
|
| PBind _ _ _, PBind _ _ _ => true
|
||||||
|
| _,_=> false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
|
||||||
|
|
||||||
|
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
|
ishf (ren_PTm ξ a) = ishf a.
|
||||||
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
|
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
|
isabs (ren_PTm ξ a) = isabs a.
|
||||||
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
|
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
|
ispair (ren_PTm ξ a) = ispair a.
|
||||||
|
Proof. case : a => //=. Qed.
|
||||||
|
|
||||||
|
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
|
||||||
|
ishne (ren_PTm ξ a) = ishne a.
|
||||||
|
Proof. move : ξ. elim : a => //=. Qed.
|
||||||
|
|
||||||
|
Lemma renaming_shift Γ A :
|
||||||
|
renaming_ok (cons A Γ) Γ shift.
|
||||||
|
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
|
||||||
|
|
||||||
|
Lemma subst_scons_id (a : PTm) :
|
||||||
|
subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a.
|
||||||
|
Proof.
|
||||||
|
have E : subst_PTm VarPTm a = a by asimpl.
|
||||||
|
rewrite -{2}E.
|
||||||
|
apply ext_PTm. case => //=.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Module HRed.
|
||||||
|
Inductive R : PTm -> PTm -> Prop :=
|
||||||
|
(****************** Beta ***********************)
|
||||||
|
| AppAbs a b :
|
||||||
|
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||||||
|
|
||||||
|
| ProjPair p a b :
|
||||||
|
R (PProj p (PPair a b)) (if p is PL then a else b)
|
||||||
|
|
||||||
|
| IndZero P b c :
|
||||||
|
R (PInd P PZero b c) b
|
||||||
|
|
||||||
|
| IndSuc P a b c :
|
||||||
|
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||||
|
|
||||||
|
(*************** Congruence ********************)
|
||||||
|
| AppCong a0 a1 b :
|
||||||
|
R a0 a1 ->
|
||||||
|
R (PApp a0 b) (PApp a1 b)
|
||||||
|
| ProjCong p a0 a1 :
|
||||||
|
R a0 a1 ->
|
||||||
|
R (PProj p a0) (PProj p a1)
|
||||||
|
| IndCong P a0 a1 b c :
|
||||||
|
R a0 a1 ->
|
||||||
|
R (PInd P a0 b c) (PInd P a1 b c).
|
||||||
|
|
||||||
|
Definition nf a := forall b, ~ R a b.
|
||||||
|
End HRed.
|
||||||
|
|
||||||
|
Inductive algo_dom : PTm -> PTm -> Prop :=
|
||||||
|
| A_AbsAbs a b :
|
||||||
|
algo_dom_r a b ->
|
||||||
|
(* --------------------- *)
|
||||||
|
algo_dom (PAbs a) (PAbs b)
|
||||||
|
|
||||||
|
| A_AbsNeu a u :
|
||||||
|
ishne u ->
|
||||||
|
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
|
||||||
|
(* --------------------- *)
|
||||||
|
algo_dom (PAbs a) u
|
||||||
|
|
||||||
|
| A_NeuAbs a u :
|
||||||
|
ishne u ->
|
||||||
|
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
|
||||||
|
(* --------------------- *)
|
||||||
|
algo_dom u (PAbs a)
|
||||||
|
|
||||||
|
| A_PairPair a0 a1 b0 b1 :
|
||||||
|
algo_dom_r a0 a1 ->
|
||||||
|
algo_dom_r b0 b1 ->
|
||||||
|
(* ---------------------------- *)
|
||||||
|
algo_dom (PPair a0 b0) (PPair a1 b1)
|
||||||
|
|
||||||
|
| A_PairNeu a0 a1 u :
|
||||||
|
ishne u ->
|
||||||
|
algo_dom_r a0 (PProj PL u) ->
|
||||||
|
algo_dom_r a1 (PProj PR u) ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
algo_dom (PPair a0 a1) u
|
||||||
|
|
||||||
|
| A_NeuPair a0 a1 u :
|
||||||
|
ishne u ->
|
||||||
|
algo_dom_r (PProj PL u) a0 ->
|
||||||
|
algo_dom_r (PProj PR u) a1 ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
algo_dom u (PPair a0 a1)
|
||||||
|
|
||||||
|
| A_ZeroZero :
|
||||||
|
algo_dom PZero PZero
|
||||||
|
|
||||||
|
| A_SucSuc a0 a1 :
|
||||||
|
algo_dom_r a0 a1 ->
|
||||||
|
algo_dom (PSuc a0) (PSuc a1)
|
||||||
|
|
||||||
|
| A_UnivCong i j :
|
||||||
|
(* -------------------------- *)
|
||||||
|
algo_dom (PUniv i) (PUniv j)
|
||||||
|
|
||||||
|
| A_BindCong p0 p1 A0 A1 B0 B1 :
|
||||||
|
algo_dom_r A0 A1 ->
|
||||||
|
algo_dom_r B0 B1 ->
|
||||||
|
(* ---------------------------- *)
|
||||||
|
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
|
||||||
|
|
||||||
|
| A_NatCong :
|
||||||
|
algo_dom PNat PNat
|
||||||
|
|
||||||
|
| A_VarCong i j :
|
||||||
|
(* -------------------------- *)
|
||||||
|
algo_dom (VarPTm i) (VarPTm j)
|
||||||
|
|
||||||
|
| A_AppCong u0 u1 a0 a1 :
|
||||||
|
ishne u0 ->
|
||||||
|
ishne u1 ->
|
||||||
|
algo_dom u0 u1 ->
|
||||||
|
algo_dom_r a0 a1 ->
|
||||||
|
(* ------------------------- *)
|
||||||
|
algo_dom (PApp u0 a0) (PApp u1 a1)
|
||||||
|
|
||||||
|
| A_ProjCong p0 p1 u0 u1 :
|
||||||
|
ishne u0 ->
|
||||||
|
ishne u1 ->
|
||||||
|
algo_dom u0 u1 ->
|
||||||
|
(* --------------------- *)
|
||||||
|
algo_dom (PProj p0 u0) (PProj p1 u1)
|
||||||
|
|
||||||
|
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
|
||||||
|
ishne u0 ->
|
||||||
|
ishne u1 ->
|
||||||
|
algo_dom_r P0 P1 ->
|
||||||
|
algo_dom u0 u1 ->
|
||||||
|
algo_dom_r b0 b1 ->
|
||||||
|
algo_dom_r c0 c1 ->
|
||||||
|
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
||||||
|
|
||||||
|
| A_Conf a b :
|
||||||
|
ishf a \/ ishne a ->
|
||||||
|
ishf b \/ ishne b ->
|
||||||
|
tm_conf a b ->
|
||||||
|
algo_dom a b
|
||||||
|
|
||||||
|
with algo_dom_r : PTm -> PTm -> Prop :=
|
||||||
|
| A_NfNf a b :
|
||||||
|
algo_dom a b ->
|
||||||
|
algo_dom_r a b
|
||||||
|
|
||||||
|
| A_HRedL a a' b :
|
||||||
|
HRed.R a a' ->
|
||||||
|
algo_dom_r a' b ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
algo_dom_r a b
|
||||||
|
|
||||||
|
| A_HRedR a b b' :
|
||||||
|
HRed.nf a ->
|
||||||
|
HRed.R b b' ->
|
||||||
|
algo_dom_r a b' ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
algo_dom_r a b.
|
||||||
|
|
||||||
|
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||||
|
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||||
|
|
||||||
|
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||||
|
#[export]Hint Constructors algo_dom algo_dom_r : adom.
|
||||||
|
|
||||||
|
Definition stm_nonconf a b :=
|
||||||
|
match a, b with
|
||||||
|
| PUniv _, PUniv _ => true
|
||||||
|
| PBind PPi _ _, PBind PPi _ _ => true
|
||||||
|
| PBind PSig _ _, PBind PSig _ _ => true
|
||||||
|
| PNat, PNat => true
|
||||||
|
| VarPTm _, VarPTm _ => true
|
||||||
|
| PApp _ _, PApp _ _ => true
|
||||||
|
| PProj _ _, PProj _ _ => true
|
||||||
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||||
|
| _, _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition neuneu_nonconf a b :=
|
||||||
|
match a, b with
|
||||||
|
| VarPTm _, VarPTm _ => true
|
||||||
|
| PApp _ _, PApp _ _ => true
|
||||||
|
| PProj _ _, PProj _ _ => true
|
||||||
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||||
|
| _, _ => false
|
||||||
|
end.
|
||||||
|
|
||||||
|
Lemma stm_tm_nonconf a b :
|
||||||
|
stm_nonconf a b -> tm_nonconf a b.
|
||||||
|
Proof. apply /implyP.
|
||||||
|
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition stm_conf a b := ~~ stm_nonconf a b.
|
||||||
|
|
||||||
|
Lemma tm_stm_conf a b :
|
||||||
|
tm_conf a b -> stm_conf a b.
|
||||||
|
Proof.
|
||||||
|
rewrite /tm_conf /stm_conf.
|
||||||
|
apply /contra /stm_tm_nonconf.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Inductive salgo_dom : PTm -> PTm -> Prop :=
|
||||||
|
| S_UnivCong i j :
|
||||||
|
(* -------------------------- *)
|
||||||
|
salgo_dom (PUniv i) (PUniv j)
|
||||||
|
|
||||||
|
| S_PiCong A0 A1 B0 B1 :
|
||||||
|
salgo_dom_r A1 A0 ->
|
||||||
|
salgo_dom_r B0 B1 ->
|
||||||
|
(* ---------------------------- *)
|
||||||
|
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
|
||||||
|
|
||||||
|
| S_SigCong A0 A1 B0 B1 :
|
||||||
|
salgo_dom_r A0 A1 ->
|
||||||
|
salgo_dom_r B0 B1 ->
|
||||||
|
(* ---------------------------- *)
|
||||||
|
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
|
||||||
|
|
||||||
|
| S_NatCong :
|
||||||
|
salgo_dom PNat PNat
|
||||||
|
|
||||||
|
| S_NeuNeu a b :
|
||||||
|
neuneu_nonconf a b ->
|
||||||
|
algo_dom a b ->
|
||||||
|
salgo_dom a b
|
||||||
|
|
||||||
|
| S_Conf a b :
|
||||||
|
ishf a \/ ishne a ->
|
||||||
|
ishf b \/ ishne b ->
|
||||||
|
stm_conf a b ->
|
||||||
|
salgo_dom a b
|
||||||
|
|
||||||
|
with salgo_dom_r : PTm -> PTm -> Prop :=
|
||||||
|
| S_NfNf a b :
|
||||||
|
salgo_dom a b ->
|
||||||
|
salgo_dom_r a b
|
||||||
|
|
||||||
|
| S_HRedL a a' b :
|
||||||
|
HRed.R a a' ->
|
||||||
|
salgo_dom_r a' b ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
salgo_dom_r a b
|
||||||
|
|
||||||
|
| S_HRedR a b b' :
|
||||||
|
HRed.nf a ->
|
||||||
|
HRed.R b b' ->
|
||||||
|
salgo_dom_r a b' ->
|
||||||
|
(* ----------------------- *)
|
||||||
|
salgo_dom_r a b.
|
||||||
|
|
||||||
|
#[export]Hint Constructors salgo_dom salgo_dom_r : sdom.
|
||||||
|
Scheme salgo_ind := Induction for salgo_dom Sort Prop
|
||||||
|
with salgor_ind := Induction for salgo_dom_r Sort Prop.
|
||||||
|
|
||||||
|
Combined Scheme salgo_dom_mutual from salgo_ind, salgor_ind.
|
||||||
|
|
||||||
|
Lemma hf_no_hred (a b : PTm) :
|
||||||
|
ishf a ->
|
||||||
|
HRed.R a b ->
|
||||||
|
False.
|
||||||
|
Proof. hauto l:on inv:HRed.R. Qed.
|
||||||
|
|
||||||
|
Lemma hne_no_hred (a b : PTm) :
|
||||||
|
ishne a ->
|
||||||
|
HRed.R a b ->
|
||||||
|
False.
|
||||||
|
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
|
||||||
|
|
||||||
|
Ltac2 destruct_salgo () :=
|
||||||
|
lazy_match! goal with
|
||||||
|
| [_ : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
|
||||||
|
if Constr.is_var a then destruct $a; ltac1:(done) else ()
|
||||||
|
| [|- is_true (stm_conf _ _)] =>
|
||||||
|
unfold stm_conf; ltac1:(done)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
|
||||||
|
|
||||||
|
Lemma algo_dom_r_inv a b :
|
||||||
|
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||||
|
Proof.
|
||||||
|
induction 1; hauto lq:on ctrs:rtc.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma A_HRedsL a a' b :
|
||||||
|
rtc HRed.R a a' ->
|
||||||
|
algo_dom_r a' b ->
|
||||||
|
algo_dom_r a b.
|
||||||
|
induction 1; sfirstorder use:A_HRedL.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma A_HRedsR a b b' :
|
||||||
|
HRed.nf a ->
|
||||||
|
rtc HRed.R b b' ->
|
||||||
|
algo_dom a b' ->
|
||||||
|
algo_dom_r a b.
|
||||||
|
Proof. induction 2; sauto. Qed.
|
||||||
|
|
||||||
|
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
||||||
|
Proof. case : a; case : b => //=. Qed.
|
||||||
|
|
||||||
|
Lemma algo_dom_no_hred (a b : PTm) :
|
||||||
|
algo_dom a b ->
|
||||||
|
HRed.nf a /\ HRed.nf b.
|
||||||
|
Proof.
|
||||||
|
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred lq:on unfold:HRed.nf.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma A_HRedR' a b b' :
|
||||||
|
HRed.R b b' ->
|
||||||
|
algo_dom_r a b' ->
|
||||||
|
algo_dom_r a b.
|
||||||
|
Proof.
|
||||||
|
move => hb /algo_dom_r_inv.
|
||||||
|
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||||
|
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||||
|
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
||||||
|
hauto lq:on use:A_HRedsL, A_HRedsR.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma algo_dom_sym :
|
||||||
|
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
||||||
|
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
||||||
|
Proof.
|
||||||
|
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma salgo_dom_r_inv a b :
|
||||||
|
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||||
|
Proof.
|
||||||
|
induction 1; hauto lq:on ctrs:rtc.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma S_HRedsL a a' b :
|
||||||
|
rtc HRed.R a a' ->
|
||||||
|
salgo_dom_r a' b ->
|
||||||
|
salgo_dom_r a b.
|
||||||
|
induction 1; sfirstorder use:S_HRedL.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma S_HRedsR a b b' :
|
||||||
|
HRed.nf a ->
|
||||||
|
rtc HRed.R b b' ->
|
||||||
|
salgo_dom a b' ->
|
||||||
|
salgo_dom_r a b.
|
||||||
|
Proof. induction 2; sauto. Qed.
|
||||||
|
|
||||||
|
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
|
||||||
|
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
|
||||||
|
|
||||||
|
Lemma salgo_dom_no_hred (a b : PTm) :
|
||||||
|
salgo_dom a b ->
|
||||||
|
HRed.nf a /\ HRed.nf b.
|
||||||
|
Proof.
|
||||||
|
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_no_hred lq:on unfold:HRed.nf.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma S_HRedR' a b b' :
|
||||||
|
HRed.R b b' ->
|
||||||
|
salgo_dom_r a b' ->
|
||||||
|
salgo_dom_r a b.
|
||||||
|
Proof.
|
||||||
|
move => hb /salgo_dom_r_inv.
|
||||||
|
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||||
|
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||||
|
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
|
||||||
|
hauto lq:on use:S_HRedsL, S_HRedsR.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac solve_conf := intros; split;
|
||||||
|
apply S_Conf; solve [destruct_salgo | sfirstorder ctrs:salgo_dom use:hne_no_hred, hf_no_hred].
|
||||||
|
|
||||||
|
Ltac solve_basic := hauto q:on ctrs:salgo_dom, salgo_dom_r, algo_dom use:algo_dom_sym.
|
||||||
|
|
||||||
|
Lemma algo_dom_salgo_dom :
|
||||||
|
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
|
||||||
|
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
|
||||||
|
Proof.
|
||||||
|
apply algo_dom_mutual => //=; try first [solve_conf | solve_basic].
|
||||||
|
- case; case; hauto lq:on ctrs:salgo_dom use:algo_dom_sym inv:HRed.R unfold:HRed.nf.
|
||||||
|
- move => a b ha hb hc. split;
|
||||||
|
apply S_Conf; hauto l:on use:tm_conf_sym, tm_stm_conf.
|
||||||
|
- hauto lq:on ctrs:salgo_dom_r use:S_HRedR'.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Fixpoint hred (a : PTm) : option (PTm) :=
|
||||||
|
match a with
|
||||||
|
| VarPTm i => None
|
||||||
|
| PAbs a => None
|
||||||
|
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
|
||||||
|
| PApp a b =>
|
||||||
|
match hred a with
|
||||||
|
| Some a => Some (PApp a b)
|
||||||
|
| None => None
|
||||||
|
end
|
||||||
|
| PPair a b => None
|
||||||
|
| PProj p (PPair a b) => if p is PL then Some a else Some b
|
||||||
|
| PProj p a =>
|
||||||
|
match hred a with
|
||||||
|
| Some a => Some (PProj p a)
|
||||||
|
| None => None
|
||||||
|
end
|
||||||
|
| PUniv i => None
|
||||||
|
| PBind p A B => None
|
||||||
|
| PNat => None
|
||||||
|
| PZero => None
|
||||||
|
| PSuc a => None
|
||||||
|
| PInd P PZero b c => Some b
|
||||||
|
| PInd P (PSuc a) b c =>
|
||||||
|
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||||
|
| PInd P a b c =>
|
||||||
|
match hred a with
|
||||||
|
| Some a => Some (PInd P a b c)
|
||||||
|
| None => None
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
|
Lemma hred_complete (a b : PTm) :
|
||||||
|
HRed.R a b -> hred a = Some b.
|
||||||
|
Proof.
|
||||||
|
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma hred_sound (a b : PTm):
|
||||||
|
hred a = Some b -> HRed.R a b.
|
||||||
|
Proof.
|
||||||
|
elim : a b; hauto q:on dep:on ctrs:HRed.R.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma hred_deter (a b0 b1 : PTm) :
|
||||||
|
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
|
||||||
|
Proof.
|
||||||
|
move /hred_complete => + /hred_complete. congruence.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
|
||||||
|
destruct (hred a) eqn:eq.
|
||||||
|
right. exists p. by apply hred_sound in eq.
|
||||||
|
left. move => b /hred_complete. congruence.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma hreds_nf_refl a b :
|
||||||
|
HRed.nf a ->
|
||||||
|
rtc HRed.R a b ->
|
||||||
|
a = b.
|
||||||
|
Proof. inversion 2; sfirstorder. Qed.
|
||||||
|
|
||||||
|
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
||||||
|
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
350
theories/executable.v
Normal file
350
theories/executable.v
Normal file
|
@ -0,0 +1,350 @@
|
||||||
|
From Equations Require Import Equations.
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
|
||||||
|
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||||
|
Require Import ssreflect ssrbool.
|
||||||
|
Import Logic (inspect).
|
||||||
|
From Ltac2 Require Import Ltac2.
|
||||||
|
Import Ltac2.Constr.
|
||||||
|
Set Default Proof Mode "Classic".
|
||||||
|
|
||||||
|
|
||||||
|
Require Import ssreflect ssrbool.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
|
||||||
|
Ltac2 destruct_algo () :=
|
||||||
|
lazy_match! goal with
|
||||||
|
| [h : algo_dom ?a ?b |- _ ] =>
|
||||||
|
if is_var a then destruct $a; ltac1:(done) else
|
||||||
|
(if is_var b then destruct $b; ltac1:(done) else ())
|
||||||
|
end.
|
||||||
|
|
||||||
|
|
||||||
|
Ltac check_equal_triv :=
|
||||||
|
intros;subst;
|
||||||
|
lazymatch goal with
|
||||||
|
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
|
||||||
|
| [h : algo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
|
||||||
|
| _ => idtac
|
||||||
|
end.
|
||||||
|
|
||||||
|
Ltac solve_check_equal :=
|
||||||
|
try solve [intros *;
|
||||||
|
match goal with
|
||||||
|
| [|- _ = _] => sauto
|
||||||
|
| _ => idtac
|
||||||
|
end].
|
||||||
|
|
||||||
|
Global Set Transparent Obligations.
|
||||||
|
|
||||||
|
Local Obligation Tactic := try solve [check_equal_triv | sfirstorder].
|
||||||
|
|
||||||
|
Program Fixpoint check_equal (a b : PTm) (h : algo_dom a b) {struct h} : bool :=
|
||||||
|
match a, b with
|
||||||
|
| VarPTm i, VarPTm j => nat_eqdec i j
|
||||||
|
| PAbs a, PAbs b => check_equal_r a b _
|
||||||
|
| PAbs a, VarPTm _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| PAbs a, PApp _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| PAbs a, PInd _ _ _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| PAbs a, PProj _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||||
|
| VarPTm _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PApp _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PProj _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PInd _ _ _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||||
|
| PPair a0 b0, PPair a1 b1 =>
|
||||||
|
check_equal_r a0 a1 _ && check_equal_r b0 b1 _
|
||||||
|
| PPair a0 b0, VarPTm _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PProj _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PApp _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| PPair a0 b0, PInd _ _ _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||||
|
| VarPTm _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PApp _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PProj _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PInd _ _ _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||||
|
| PNat, PNat => true
|
||||||
|
| PZero, PZero => true
|
||||||
|
| PSuc a, PSuc b => check_equal_r a b _
|
||||||
|
| PProj p0 a, PProj p1 b => PTag_eqdec p0 p1 && check_equal a b _
|
||||||
|
| PApp a0 b0, PApp a1 b1 => check_equal a0 a1 _ && check_equal_r b0 b1 _
|
||||||
|
| PInd P0 u0 b0 c0, PInd P1 u1 b1 c1 =>
|
||||||
|
check_equal_r P0 P1 _ && check_equal u0 u1 _ && check_equal_r b0 b1 _ && check_equal_r c0 c1 _
|
||||||
|
| PUniv i, PUniv j => nat_eqdec i j
|
||||||
|
| PBind p0 A0 B0, PBind p1 A1 B1 => BTag_eqdec p0 p1 && check_equal_r A0 A1 _ && check_equal_r B0 B1 _
|
||||||
|
| _, _ => false
|
||||||
|
end
|
||||||
|
with check_equal_r (a b : PTm) (h : algo_dom_r a b) {struct h} : bool :=
|
||||||
|
match fancy_hred a with
|
||||||
|
| inr a' => check_equal_r (proj1_sig a') b _
|
||||||
|
| inl ha' => match fancy_hred b with
|
||||||
|
| inr b' => check_equal_r a (proj1_sig b') _
|
||||||
|
| inl hb' => check_equal a b _
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
|
Next Obligation.
|
||||||
|
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||||
|
inversion h; subst => //=.
|
||||||
|
exfalso. sfirstorder use:algo_dom_no_hred.
|
||||||
|
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||||
|
exfalso. sfirstorder.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Next Obligation.
|
||||||
|
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||||
|
destruct b' as [b' hb']. simpl.
|
||||||
|
inversion h; subst.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder use:algo_dom_no_hred.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder.
|
||||||
|
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||||
|
Next Obligation.
|
||||||
|
move => /= a b hdom ha _ hb _.
|
||||||
|
inversion hdom; subst.
|
||||||
|
- assumption.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_abs_neu a u neu h : check_equal (PAbs a) u (A_AbsNeu a u neu h) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h.
|
||||||
|
Proof. case : u neu h => //=. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_neu_abs a u neu h : check_equal u (PAbs a) (A_NeuAbs a u neu h) = check_equal_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a h.
|
||||||
|
Proof. case : u neu h => //=. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_pair_pair a0 b0 a1 b1 a h :
|
||||||
|
check_equal (PPair a0 b0) (PPair a1 b1) (A_PairPair a0 a1 b0 b1 a h) =
|
||||||
|
check_equal_r a0 a1 a && check_equal_r b0 b1 h.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_pair_neu a0 a1 u neu h h'
|
||||||
|
: check_equal (PPair a0 a1) u (A_PairNeu a0 a1 u neu h h') = check_equal_r a0 (PProj PL u) h && check_equal_r a1 (PProj PR u) h'.
|
||||||
|
Proof.
|
||||||
|
case : u neu h h' => //=.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_neu_pair a0 a1 u neu h h'
|
||||||
|
: check_equal u (PPair a0 a1) (A_NeuPair a0 a1 u neu h h') = check_equal_r (PProj PL u) a0 h && check_equal_r (PProj PR u) a1 h'.
|
||||||
|
Proof.
|
||||||
|
case : u neu h h' => //=.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_bind_bind p0 A0 B0 p1 A1 B1 h0 h1 :
|
||||||
|
check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) (A_BindCong p0 p1 A0 A1 B0 B1 h0 h1) =
|
||||||
|
BTag_eqdec p0 p1 && check_equal_r A0 A1 h0 && check_equal_r B0 B1 h1.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_proj_proj p0 u0 p1 u1 neu0 neu1 h :
|
||||||
|
check_equal (PProj p0 u0) (PProj p1 u1) (A_ProjCong p0 p1 u0 u1 neu0 neu1 h) =
|
||||||
|
PTag_eqdec p0 p1 && check_equal u0 u1 h.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_app_app u0 a0 u1 a1 hu0 hu1 hdom hdom' :
|
||||||
|
check_equal (PApp u0 a0) (PApp u1 a1) (A_AppCong u0 u1 a0 a1 hu0 hu1 hdom hdom') =
|
||||||
|
check_equal u0 u1 hdom && check_equal_r a0 a1 hdom'.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_ind_ind P0 u0 b0 c0 P1 u1 b1 c1 neu0 neu1 domP domu domb domc :
|
||||||
|
check_equal (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
||||||
|
(A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP domu domb domc) =
|
||||||
|
check_equal_r P0 P1 domP && check_equal u0 u1 domu && check_equal_r b0 b1 domb && check_equal_r c0 c1 domc.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma hred_none a : HRed.nf a -> hred a = None.
|
||||||
|
Proof.
|
||||||
|
destruct (hred a) eqn:eq;
|
||||||
|
sfirstorder use:hred_complete, hred_sound.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac simp_check_r := with_strategy opaque [check_equal] simpl in *.
|
||||||
|
|
||||||
|
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
|
||||||
|
Proof.
|
||||||
|
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
||||||
|
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||||
|
simp_check_r.
|
||||||
|
destruct (fancy_hred a).
|
||||||
|
destruct (fancy_hred b).
|
||||||
|
reflexivity.
|
||||||
|
exfalso. hauto l:on use:hred_complete.
|
||||||
|
exfalso. hauto l:on use:hred_complete.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_hredl a b a' ha doma :
|
||||||
|
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
|
||||||
|
Proof.
|
||||||
|
simpl.
|
||||||
|
destruct (fancy_hred a).
|
||||||
|
- hauto q:on unfold:HRed.nf.
|
||||||
|
- destruct s as [x ?].
|
||||||
|
have ? : x = a' by eauto using hred_deter. subst.
|
||||||
|
simpl.
|
||||||
|
f_equal.
|
||||||
|
apply PropExtensionality.proof_irrelevance.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_hredr a b b' hu r a0 :
|
||||||
|
check_equal_r a b (A_HRedR a b b' hu r a0) =
|
||||||
|
check_equal_r a b' a0.
|
||||||
|
Proof.
|
||||||
|
simpl.
|
||||||
|
destruct (fancy_hred a).
|
||||||
|
- simpl.
|
||||||
|
destruct (fancy_hred b) as [|[b'' hb']].
|
||||||
|
+ hauto lq:on unfold:HRed.nf.
|
||||||
|
+ simpl.
|
||||||
|
have ? : (b'' = b') by eauto using hred_deter. subst.
|
||||||
|
f_equal.
|
||||||
|
apply PropExtensionality.proof_irrelevance.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_univ i j :
|
||||||
|
check_equal (PUniv i) (PUniv j) (A_UnivCong i j) = nat_eqdec i j.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_conf a b nfa nfb nfab :
|
||||||
|
check_equal a b (A_Conf a b nfa nfb nfab) = false.
|
||||||
|
Proof. destruct a; destruct b => //=. Qed.
|
||||||
|
|
||||||
|
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
||||||
|
|
||||||
|
Ltac2 destruct_salgo () :=
|
||||||
|
lazy_match! goal with
|
||||||
|
| [h : salgo_dom ?a ?b |- _ ] =>
|
||||||
|
if is_var a then destruct $a; ltac1:(done) else
|
||||||
|
(if is_var b then destruct $b; ltac1:(done) else ())
|
||||||
|
end.
|
||||||
|
|
||||||
|
Ltac check_sub_triv :=
|
||||||
|
intros;subst;
|
||||||
|
lazymatch goal with
|
||||||
|
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
|
||||||
|
| [_ : salgo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
|
||||||
|
| _ => idtac
|
||||||
|
end.
|
||||||
|
|
||||||
|
Local Obligation Tactic := try solve [check_sub_triv | sfirstorder].
|
||||||
|
|
||||||
|
Program Fixpoint check_sub (a b : PTm) (h : salgo_dom a b) {struct h} :=
|
||||||
|
match a, b with
|
||||||
|
| PBind PPi A0 B0, PBind PPi A1 B1 =>
|
||||||
|
check_sub_r A1 A0 _ && check_sub_r B0 B1 _
|
||||||
|
| PBind PSig A0 B0, PBind PSig A1 B1 =>
|
||||||
|
check_sub_r A0 A1 _ && check_sub_r B0 B1 _
|
||||||
|
| PUniv i, PUniv j =>
|
||||||
|
PeanoNat.Nat.leb i j
|
||||||
|
| PNat, PNat => true
|
||||||
|
| PApp _ _ , PApp _ _ => check_equal a b _
|
||||||
|
| VarPTm _, VarPTm _ => check_equal a b _
|
||||||
|
| PInd _ _ _ _, PInd _ _ _ _ => check_equal a b _
|
||||||
|
| PProj _ _, PProj _ _ => check_equal a b _
|
||||||
|
| _, _ => false
|
||||||
|
end
|
||||||
|
with check_sub_r (a b : PTm) (h : salgo_dom_r a b) {struct h} :=
|
||||||
|
match fancy_hred a with
|
||||||
|
| inr a' => check_sub_r (proj1_sig a') b _
|
||||||
|
| inl ha' => match fancy_hred b with
|
||||||
|
| inr b' => check_sub_r a (proj1_sig b') _
|
||||||
|
| inl hb' => check_sub a b _
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
|
Next Obligation.
|
||||||
|
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||||
|
inversion h; subst => //=.
|
||||||
|
exfalso. sfirstorder use:salgo_dom_no_hred.
|
||||||
|
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||||
|
exfalso. sfirstorder.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Next Obligation.
|
||||||
|
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||||
|
destruct b' as [b' hb']. simpl.
|
||||||
|
inversion h; subst.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder use:salgo_dom_no_hred.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder.
|
||||||
|
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||||
|
Next Obligation.
|
||||||
|
move => /= a b hdom ha _ hb _.
|
||||||
|
inversion hdom; subst.
|
||||||
|
- assumption.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
- exfalso; sfirstorder.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma check_sub_pi_pi A0 B0 A1 B1 h0 h1 :
|
||||||
|
check_sub (PBind PPi A0 B0) (PBind PPi A1 B1) (S_PiCong A0 A1 B0 B1 h0 h1) =
|
||||||
|
check_sub_r A1 A0 h0 && check_sub_r B0 B1 h1.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_sig_sig A0 B0 A1 B1 h0 h1 :
|
||||||
|
check_sub (PBind PSig A0 B0) (PBind PSig A1 B1) (S_SigCong A0 A1 B0 B1 h0 h1) =
|
||||||
|
check_sub_r A0 A1 h0 && check_sub_r B0 B1 h1.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_univ_univ i j :
|
||||||
|
check_sub (PUniv i) (PUniv j) (S_UnivCong i j) = PeanoNat.Nat.leb i j.
|
||||||
|
Proof. reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_nfnf a b dom : check_sub_r a b (S_NfNf a b dom) = check_sub a b dom.
|
||||||
|
Proof.
|
||||||
|
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
|
||||||
|
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||||
|
simpl.
|
||||||
|
destruct (fancy_hred b)=>//=.
|
||||||
|
destruct (fancy_hred a) =>//=.
|
||||||
|
destruct s as [a' ha']. simpl.
|
||||||
|
hauto l:on use:hred_complete.
|
||||||
|
destruct s as [b' hb']. simpl.
|
||||||
|
hauto l:on use:hred_complete.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_hredl a b a' ha doma :
|
||||||
|
check_sub_r a b (S_HRedL a a' b ha doma) = check_sub_r a' b doma.
|
||||||
|
Proof.
|
||||||
|
simpl.
|
||||||
|
destruct (fancy_hred a).
|
||||||
|
- hauto q:on unfold:HRed.nf.
|
||||||
|
- destruct s as [x ?].
|
||||||
|
have ? : x = a' by eauto using hred_deter. subst.
|
||||||
|
simpl.
|
||||||
|
f_equal.
|
||||||
|
apply PropExtensionality.proof_irrelevance.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_hredr a b b' hu r a0 :
|
||||||
|
check_sub_r a b (S_HRedR a b b' hu r a0) =
|
||||||
|
check_sub_r a b' a0.
|
||||||
|
Proof.
|
||||||
|
simpl.
|
||||||
|
destruct (fancy_hred a).
|
||||||
|
- simpl.
|
||||||
|
destruct (fancy_hred b) as [|[b'' hb']].
|
||||||
|
+ hauto lq:on unfold:HRed.nf.
|
||||||
|
+ simpl.
|
||||||
|
have ? : (b'' = b') by eauto using hred_deter. subst.
|
||||||
|
f_equal.
|
||||||
|
apply PropExtensionality.proof_irrelevance.
|
||||||
|
- exfalso.
|
||||||
|
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_neuneu a b i a0 : check_sub a b (S_NeuNeu a b i a0) = check_equal a b a0.
|
||||||
|
Proof. destruct a,b => //=. Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_conf a b n n0 i : check_sub a b (S_Conf a b n n0 i) = false.
|
||||||
|
Proof. destruct a,b=>//=; ecrush inv:BTag. Qed.
|
||||||
|
|
||||||
|
#[export]Hint Rewrite check_sub_neuneu check_sub_conf check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.
|
259
theories/executable_correct.v
Normal file
259
theories/executable_correct.v
Normal file
|
@ -0,0 +1,259 @@
|
||||||
|
From Equations Require Import Equations.
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
|
||||||
|
Require Import ssreflect ssrbool.
|
||||||
|
From stdpp Require Import relations (rtc(..)).
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
|
||||||
|
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||||||
|
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||||||
|
|
||||||
|
Lemma coqeq_no_hred a b : a ↔ b -> HRed.nf a /\ HRed.nf b.
|
||||||
|
Proof. induction 1;
|
||||||
|
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b.
|
||||||
|
Proof.
|
||||||
|
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma coqeq_neuneu u0 u1 :
|
||||||
|
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||||||
|
Proof.
|
||||||
|
inversion 3; subst => //=.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma coqeq_neuneu' u0 u1 :
|
||||||
|
neuneu_nonconf u0 u1 ->
|
||||||
|
u0 ↔ u1 ->
|
||||||
|
u0 ∼ u1.
|
||||||
|
Proof.
|
||||||
|
induction 2 => //=; destruct u => //=.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_equal_sound :
|
||||||
|
(forall a b (h : algo_dom a b), check_equal a b h -> a ↔ b) /\
|
||||||
|
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a ⇔ b).
|
||||||
|
Proof.
|
||||||
|
apply algo_dom_mutual.
|
||||||
|
- move => a b h.
|
||||||
|
move => h0.
|
||||||
|
rewrite check_equal_abs_abs.
|
||||||
|
constructor. tauto.
|
||||||
|
- move => a u i h0 ih h.
|
||||||
|
apply CE_AbsNeu => //.
|
||||||
|
apply : ih. simp check_equal tm_to_eq_view in h.
|
||||||
|
by rewrite check_equal_abs_neu in h.
|
||||||
|
- move => a u i h ih h0.
|
||||||
|
apply CE_NeuAbs=>//.
|
||||||
|
apply ih.
|
||||||
|
by rewrite check_equal_neu_abs in h0.
|
||||||
|
- move => a0 a1 b0 b1 a ha h.
|
||||||
|
move => h0.
|
||||||
|
rewrite check_equal_pair_pair. move /andP => [h1 h2].
|
||||||
|
sauto lq:on.
|
||||||
|
- move => a0 a1 u neu h ih h' ih' he.
|
||||||
|
rewrite check_equal_pair_neu in he.
|
||||||
|
apply CE_PairNeu => //; hauto lqb:on.
|
||||||
|
- move => a0 a1 u i a ha a2 hb.
|
||||||
|
rewrite check_equal_neu_pair => *.
|
||||||
|
apply CE_NeuPair => //; hauto lqb:on.
|
||||||
|
- sfirstorder.
|
||||||
|
- hauto l:on use:CE_SucSuc.
|
||||||
|
- move => i j /sumboolP.
|
||||||
|
hauto lq:on use:CE_UnivCong.
|
||||||
|
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
|
||||||
|
rewrite check_equal_bind_bind in h2.
|
||||||
|
move : h2.
|
||||||
|
move /andP => [/andP [h20 h21] h3].
|
||||||
|
move /sumboolP : h20 => ?. subst.
|
||||||
|
hauto l:on use:CE_BindCong.
|
||||||
|
- sfirstorder.
|
||||||
|
- move => i j /sumboolP ?. subst.
|
||||||
|
apply : CE_NeuNeu. apply CE_VarCong.
|
||||||
|
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
|
||||||
|
rewrite check_equal_app_app in hE.
|
||||||
|
move /andP : hE => [h0 h1].
|
||||||
|
sauto lq:on use:coqeq_neuneu.
|
||||||
|
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
|
||||||
|
apply CE_NeuNeu.
|
||||||
|
rewrite check_equal_proj_proj in he.
|
||||||
|
move /andP : he => [/sumboolP ? h1]. subst.
|
||||||
|
sauto lq:on use:coqeq_neuneu.
|
||||||
|
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||||||
|
rewrite check_equal_ind_ind.
|
||||||
|
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
|
||||||
|
sauto lq:on use:coqeq_neuneu.
|
||||||
|
- move => a b n n0 i. by rewrite check_equal_conf.
|
||||||
|
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
|
||||||
|
rewrite check_equal_nfnf in ih.
|
||||||
|
tauto.
|
||||||
|
- move => a a' b ha doma ih hE.
|
||||||
|
rewrite check_equal_hredl in hE. sauto lq:on.
|
||||||
|
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
|
||||||
|
sauto lq:on rew:off.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||||
|
|
||||||
|
Lemma check_equal_complete :
|
||||||
|
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a ↔ b) /\
|
||||||
|
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a ⇔ b).
|
||||||
|
Proof.
|
||||||
|
apply algo_dom_mutual.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- ce_solv.
|
||||||
|
- move => i j.
|
||||||
|
rewrite check_equal_univ.
|
||||||
|
case : nat_eqdec => //=.
|
||||||
|
ce_solv.
|
||||||
|
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
|
||||||
|
rewrite check_equal_bind_bind.
|
||||||
|
move /negP.
|
||||||
|
move /nandP.
|
||||||
|
case. move /nandP.
|
||||||
|
case. move => h. have : p0 <> p1 by sauto lqb:on.
|
||||||
|
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||||
|
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||||
|
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||||
|
- simp check_equal. done.
|
||||||
|
- move => i j. move => h. have {h} : ~ nat_eqdec i j by done.
|
||||||
|
case : nat_eqdec => //=. ce_solv.
|
||||||
|
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
|
||||||
|
rewrite check_equal_app_app.
|
||||||
|
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
|
||||||
|
- move => p0 p1 u0 u1 neu0 neu1 h ih.
|
||||||
|
rewrite check_equal_proj_proj.
|
||||||
|
move /negP /nandP. case.
|
||||||
|
case : PTag_eqdec => //=. sauto lq:on.
|
||||||
|
sauto lqb:on.
|
||||||
|
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||||||
|
rewrite check_equal_ind_ind.
|
||||||
|
move => + h.
|
||||||
|
inversion h; subst.
|
||||||
|
inversion H; subst.
|
||||||
|
move /negP /nandP.
|
||||||
|
case. move/nandP.
|
||||||
|
case. move/nandP.
|
||||||
|
case. qauto b:on inv:CoqEq, CoqEq_Neu.
|
||||||
|
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||||
|
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||||
|
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||||
|
- rewrite /tm_conf.
|
||||||
|
move => a b n n0 i. simp ce_prop.
|
||||||
|
move => _. inversion 1; subst => //=.
|
||||||
|
+ destruct b => //=.
|
||||||
|
+ destruct a => //=.
|
||||||
|
+ destruct b => //=.
|
||||||
|
+ destruct a => //=.
|
||||||
|
+ hauto l:on inv:CoqEq_Neu.
|
||||||
|
- move => a b h ih.
|
||||||
|
rewrite check_equal_nfnf.
|
||||||
|
move : ih => /[apply].
|
||||||
|
move => + h0.
|
||||||
|
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
|
||||||
|
inversion h0; subst.
|
||||||
|
hauto l:on use:hreds_nf_refl.
|
||||||
|
- move => a a' b h dom.
|
||||||
|
simp ce_prop => /[apply].
|
||||||
|
move => + h1. inversion h1; subst.
|
||||||
|
inversion H; subst.
|
||||||
|
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
|
||||||
|
+ have ? : y = a' by eauto using hred_deter. subst.
|
||||||
|
sauto lq:on.
|
||||||
|
- move => a b b' u hr dom ihdom.
|
||||||
|
rewrite check_equal_hredr.
|
||||||
|
move => + h. inversion h; subst.
|
||||||
|
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||||||
|
move => {}/ihdom.
|
||||||
|
inversion H0; subst.
|
||||||
|
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
|
||||||
|
sfirstorder unfold:HRed.nf.
|
||||||
|
+ sauto lq:on use:hred_deter.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
|
||||||
|
|
||||||
|
Lemma check_sub_sound :
|
||||||
|
(forall a b (h : salgo_dom a b), check_sub a b h -> a ⋖ b) /\
|
||||||
|
(forall a b (h : salgo_dom_r a b), check_sub_r a b h -> a ≪ b).
|
||||||
|
Proof.
|
||||||
|
apply salgo_dom_mutual; try done.
|
||||||
|
- simpl. move => i j [];
|
||||||
|
sauto lq:on use:Reflect.Nat_leb_le.
|
||||||
|
- move => A0 A1 B0 B1 s ihs s0 ihs0.
|
||||||
|
simp ce_prop.
|
||||||
|
hauto lqb:on ctrs:CoqLEq.
|
||||||
|
- move => A0 A1 B0 B1 s ihs s0 ihs0.
|
||||||
|
simp ce_prop.
|
||||||
|
hauto lqb:on ctrs:CoqLEq.
|
||||||
|
- qauto ctrs:CoqLEq.
|
||||||
|
- move => a b i a0.
|
||||||
|
simp ce_prop.
|
||||||
|
move => h. apply CLE_NeuNeu.
|
||||||
|
hauto lq:on use:check_equal_sound, coqeq_neuneu', coqeq_symmetric_mutual.
|
||||||
|
- move => a b n n0 i.
|
||||||
|
by simp ce_prop.
|
||||||
|
- move => a b h ih. simp ce_prop. hauto l:on.
|
||||||
|
- move => a a' b hr h ih.
|
||||||
|
simp ce_prop.
|
||||||
|
sauto lq:on rew:off.
|
||||||
|
- move => a b b' n r dom ihdom.
|
||||||
|
simp ce_prop.
|
||||||
|
move : ihdom => /[apply].
|
||||||
|
move {dom}.
|
||||||
|
sauto lq:on rew:off.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma check_sub_complete :
|
||||||
|
(forall a b (h : salgo_dom a b), check_sub a b h = false -> ~ a ⋖ b) /\
|
||||||
|
(forall a b (h : salgo_dom_r a b), check_sub_r a b h = false -> ~ a ≪ b).
|
||||||
|
Proof.
|
||||||
|
apply salgo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
|
||||||
|
- move => i j /=.
|
||||||
|
move => + h. inversion h; subst => //=.
|
||||||
|
sfirstorder use:PeanoNat.Nat.leb_le.
|
||||||
|
hauto lq:on inv:CoqEq_Neu.
|
||||||
|
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
|
||||||
|
move /nandP.
|
||||||
|
case.
|
||||||
|
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||||
|
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||||
|
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
|
||||||
|
move /nandP.
|
||||||
|
case.
|
||||||
|
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||||
|
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||||
|
- move => a b i hs. simp ce_prop.
|
||||||
|
move => + h. inversion h; subst => //=.
|
||||||
|
move => /negP h0.
|
||||||
|
eapply check_equal_complete in h0.
|
||||||
|
apply h0. by constructor.
|
||||||
|
- move => a b s ihs. simp ce_prop.
|
||||||
|
move => h0 h1. apply ihs =>//.
|
||||||
|
have [? ?] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
|
||||||
|
inversion h1; subst.
|
||||||
|
hauto l:on use:hreds_nf_refl.
|
||||||
|
- move => a a' b h dom.
|
||||||
|
simp ce_prop => /[apply].
|
||||||
|
move => + h1. inversion h1; subst.
|
||||||
|
inversion H; subst.
|
||||||
|
+ sfirstorder use:coqleq_no_hred unfold:HRed.nf.
|
||||||
|
+ have ? : y = a' by eauto using hred_deter. subst.
|
||||||
|
sauto lq:on.
|
||||||
|
- move => a b b' u hr dom ihdom.
|
||||||
|
rewrite check_sub_hredr.
|
||||||
|
move => + h. inversion h; subst.
|
||||||
|
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||||||
|
move => {}/ihdom.
|
||||||
|
inversion H0; subst.
|
||||||
|
+ have ? : HRed.nf b'0 by hauto l:on use:coqleq_no_hred.
|
||||||
|
sfirstorder unfold:HRed.nf.
|
||||||
|
+ sauto lq:on use:hred_deter.
|
||||||
|
Qed.
|
2500
theories/fp_red.v
2500
theories/fp_red.v
File diff suppressed because it is too large
Load diff
1704
theories/logrel.v
Normal file
1704
theories/logrel.v
Normal file
File diff suppressed because it is too large
Load diff
172
theories/preservation.v
Normal file
172
theories/preservation.v
Normal file
|
@ -0,0 +1,172 @@
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural fp_red admissible.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
Require Import ssreflect.
|
||||||
|
Require Import Psatz.
|
||||||
|
Require Import Coq.Logic.FunctionalExtensionality.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma Ind_Inv Γ P (a : PTm) b c U :
|
||||||
|
Γ ⊢ PInd P a b c ∈ U ->
|
||||||
|
exists i, (cons PNat Γ) ⊢ P ∈ PUniv i /\
|
||||||
|
Γ ⊢ a ∈ PNat /\
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P /\
|
||||||
|
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\
|
||||||
|
Γ ⊢ subst_PTm (scons a VarPTm) P ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E : (PInd P a b c)=> u hu.
|
||||||
|
move : P a b c E. elim : Γ u U / hu => //=.
|
||||||
|
- move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst.
|
||||||
|
exists i. repeat split => //=.
|
||||||
|
have : Γ ⊢ subst_PTm (scons a VarPTm) P ∈ subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt.
|
||||||
|
eauto using E_Refl, Su_Eq.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_Abs Γ a b A B :
|
||||||
|
A :: Γ ⊢ a ≡ b ∈ B ->
|
||||||
|
Γ ⊢ PAbs a ≡ PAbs b ∈ PBind PPi A B.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have [i hA] : exists i, Γ ⊢ A ∈ PUniv i by hauto l:on use:wff_mutual inv:Wff.
|
||||||
|
have [j hB] : exists j, A :: Γ ⊢ B ∈ PUniv j by hauto l:on use:regularity.
|
||||||
|
have hΓ : ⊢ Γ by sfirstorder use:wff_mutual.
|
||||||
|
have hΓ' : ⊢ A::Γ by eauto with wt.
|
||||||
|
set k := max i j.
|
||||||
|
have [? ?] : i <= k /\ j <= k by lia.
|
||||||
|
have {}hA : Γ ⊢ A ∈ PUniv k by hauto l:on use:T_Conv, Su_Univ.
|
||||||
|
have {}hB : A :: Γ ⊢ B ∈ PUniv k by hauto lq:on use:T_Conv, Su_Univ.
|
||||||
|
have hPi : Γ ⊢ PBind PPi A B ∈ PUniv k by eauto with wt.
|
||||||
|
apply : E_FunExt; eauto with wt.
|
||||||
|
hauto lq:on rew:off use:regularity, T_Abs.
|
||||||
|
hauto lq:on rew:off use:regularity, T_Abs.
|
||||||
|
apply : E_Transitive => /=. apply E_AppAbs.
|
||||||
|
hauto lq:on use:T_Eta, regularity.
|
||||||
|
apply /E_Symmetric /E_Transitive. apply E_AppAbs.
|
||||||
|
hauto lq:on use:T_Eta, regularity.
|
||||||
|
asimpl. rewrite !subst_scons_id. by apply E_Symmetric.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_Pair Γ a0 b0 a1 b1 A B i :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
||||||
|
Γ ⊢ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B.
|
||||||
|
Proof.
|
||||||
|
move => hSig ha hb.
|
||||||
|
have [ha0 ha1] : Γ ⊢ a0 ∈ A /\ Γ ⊢ a1 ∈ A by hauto l:on use:regularity.
|
||||||
|
have [hb0 hb1] : Γ ⊢ b0 ∈ subst_PTm (scons a0 VarPTm) B /\
|
||||||
|
Γ ⊢ b1 ∈ subst_PTm (scons a0 VarPTm) B by hauto l:on use:regularity.
|
||||||
|
have hp : Γ ⊢ PPair a0 b0 ∈ PBind PSig A B by eauto with wt.
|
||||||
|
have hp' : Γ ⊢ PPair a1 b1 ∈ PBind PSig A B. econstructor; eauto with wt; [idtac].
|
||||||
|
apply : T_Conv; eauto. apply : Su_Sig_Proj2; by eauto using Su_Eq, E_Refl.
|
||||||
|
have ea : Γ ⊢ PProj PL (PPair a0 b0) ≡ a0 ∈ A by eauto with wt.
|
||||||
|
have : Γ ⊢ PProj PR (PPair a0 b0) ≡ b0 ∈ subst_PTm (scons a0 VarPTm) B by eauto with wt.
|
||||||
|
have : Γ ⊢ PProj PL (PPair a1 b1) ≡ a1 ∈ A by eauto using E_ProjPair1 with wt.
|
||||||
|
have : Γ ⊢ PProj PR (PPair a1 b1) ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||||||
|
apply : E_Conv; eauto using E_ProjPair2 with wt.
|
||||||
|
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
|
||||||
|
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
|
||||||
|
by eauto using E_Symmetric.
|
||||||
|
move => *.
|
||||||
|
apply : E_PairExt; eauto using E_Symmetric, E_Transitive.
|
||||||
|
apply : E_Conv. by eauto using E_Symmetric, E_Transitive.
|
||||||
|
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
|
||||||
|
apply : E_Transitive. by eauto. apply /E_Symmetric /E_Transitive.
|
||||||
|
by eauto using E_ProjPair1.
|
||||||
|
eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Suc_Inv Γ (a : PTm) A :
|
||||||
|
Γ ⊢ PSuc a ∈ A -> Γ ⊢ a ∈ PNat /\ Γ ⊢ PNat ≲ A.
|
||||||
|
Proof.
|
||||||
|
move E : (PSuc a) => u hu.
|
||||||
|
move : a E.
|
||||||
|
elim : Γ u A /hu => //=.
|
||||||
|
- move => Γ a ha iha a0 [*]. subst.
|
||||||
|
split => //=. eapply wff_mutual in ha.
|
||||||
|
apply : Su_Eq.
|
||||||
|
apply E_Refl. by apply T_Nat'.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma RRed_Eq Γ (a b : PTm) A :
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
RRed.R a b ->
|
||||||
|
Γ ⊢ a ≡ b ∈ A.
|
||||||
|
Proof.
|
||||||
|
move => + h. move : Γ A. elim : a b /h.
|
||||||
|
- apply E_AppAbs.
|
||||||
|
- move => p a b Γ A.
|
||||||
|
case : p => //=.
|
||||||
|
+ apply E_ProjPair1.
|
||||||
|
+ move /Proj2_Inv. move => [A0][B0][hab]hA0.
|
||||||
|
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
|
||||||
|
have [i ?] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||||
|
have : Γ ⊢ PPair a b ∈ PBind PSig A1 B1 by hauto lq:on ctrs:Wt.
|
||||||
|
move /T_Proj1.
|
||||||
|
move /E_ProjPair1 /E_Symmetric => h.
|
||||||
|
have /Su_Sig_Proj1 hSA := hS.
|
||||||
|
have : Γ ⊢ subst_PTm (scons a VarPTm) B1 ≲ subst_PTm (scons (PProj PL (PPair a b)) VarPTm) B0 by
|
||||||
|
apply : Su_Sig_Proj2; eauto.
|
||||||
|
move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply].
|
||||||
|
move {hS}.
|
||||||
|
move => ?. apply : E_Conv; eauto. apply : typing.E_ProjPair2; eauto.
|
||||||
|
- hauto lq:on use:Ind_Inv, E_Conv, E_IndZero.
|
||||||
|
- move => P a b c Γ A.
|
||||||
|
move /Ind_Inv.
|
||||||
|
move => [i][hP][ha][hb][hc]hSu.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_IndSuc'; eauto.
|
||||||
|
hauto l:on use:Suc_Inv.
|
||||||
|
- qauto l:on use:Abs_Inv, E_Conv, regularity_sub0, E_Abs.
|
||||||
|
- move => a0 a1 b ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
|
||||||
|
have {}/iha iha := ih0.
|
||||||
|
have [i hP] : exists i, Γ ⊢ PBind PPi A0 B0 ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_App; eauto using E_Refl.
|
||||||
|
- move => a0 b0 b1 ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
|
||||||
|
have {}/iha iha := ih1.
|
||||||
|
have [i hP] : exists i, Γ ⊢ PBind PPi A0 B0 ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_App; eauto.
|
||||||
|
sfirstorder use:E_Refl.
|
||||||
|
- move => a0 a1 b ha iha Γ A /Pair_Inv.
|
||||||
|
move => [A0][B0][h0][h1]hU.
|
||||||
|
have [i hP] : exists i, Γ ⊢ PBind PSig A0 B0 ∈ PUniv i by eauto using regularity_sub0.
|
||||||
|
have {}/iha iha := h0.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_Pair; eauto using E_Refl.
|
||||||
|
- move => a b0 b1 ha iha Γ A /Pair_Inv.
|
||||||
|
move => [A0][B0][h0][h1]hU.
|
||||||
|
have [i hP] : exists i, Γ ⊢ PBind PSig A0 B0 ∈ PUniv i by eauto using regularity_sub0.
|
||||||
|
have {}/iha iha := h1.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_Pair; eauto using E_Refl.
|
||||||
|
- case.
|
||||||
|
+ move => a0 a1 ha iha Γ A /Proj1_Inv [A0][B0][h0]hU.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
qauto l:on ctrs:Eq,Wt.
|
||||||
|
+ move => a0 a1 ha iha Γ A /Proj2_Inv [A0][B0][h0]hU.
|
||||||
|
have [i hP] : exists i, Γ ⊢ PBind PSig A0 B0 ∈ PUniv i by sfirstorder use:regularity.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply : E_Proj2; eauto.
|
||||||
|
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
|
||||||
|
have {}/ihA ihA := h0.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply E_Bind'; eauto using E_Refl.
|
||||||
|
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
|
||||||
|
have {}/ihA ihA := h1.
|
||||||
|
apply : E_Conv; eauto.
|
||||||
|
apply E_Bind'; eauto using E_Refl.
|
||||||
|
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||||
|
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||||
|
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||||
|
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||||
|
- hauto lq:on use:Suc_Inv, E_Conv, E_SucCong.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem subject_reduction Γ (a b A : PTm) :
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
RRed.R a b ->
|
||||||
|
Γ ⊢ b ∈ A.
|
||||||
|
Proof. hauto lq:on use:RRed_Eq, regularity. Qed.
|
15
theories/soundness.v
Normal file
15
theories/soundness.v
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
Require Import Autosubst2.unscoped Autosubst2.syntax.
|
||||||
|
Require Import fp_red logrel typing.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
|
||||||
|
Theorem fundamental_theorem :
|
||||||
|
(forall Γ, ⊢ Γ -> ⊨ Γ) /\
|
||||||
|
(forall Γ a A, Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||||
|
(forall Γ a b A, Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||||
|
(forall Γ a b, Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||||
|
apply wt_mutual; eauto with sem.
|
||||||
|
Unshelve. all : exact 0.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma synsub_to_usub : forall Γ (a b : PTm), Γ ⊢ a ≲ b -> SN a /\ SN b /\ Sub.R a b.
|
||||||
|
Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed.
|
845
theories/structural.v
Normal file
845
theories/structural.v
Normal file
|
@ -0,0 +1,845 @@
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
Require Import ssreflect.
|
||||||
|
Require Import Psatz.
|
||||||
|
|
||||||
|
Lemma wff_mutual :
|
||||||
|
(forall Γ, ⊢ Γ -> True) /\
|
||||||
|
(forall Γ (a A : PTm), Γ ⊢ a ∈ A -> ⊢ Γ) /\
|
||||||
|
(forall Γ (a b A : PTm), Γ ⊢ a ≡ b ∈ A -> ⊢ Γ) /\
|
||||||
|
(forall Γ (A B : PTm), Γ ⊢ A ≲ B -> ⊢ Γ).
|
||||||
|
Proof. apply wt_mutual; eauto. Qed.
|
||||||
|
|
||||||
|
#[export]Hint Constructors Wt Wff Eq : wt.
|
||||||
|
|
||||||
|
Lemma T_Nat' Γ :
|
||||||
|
⊢ Γ ->
|
||||||
|
Γ ⊢ PNat ∈ PUniv 0.
|
||||||
|
Proof. apply T_Nat. Qed.
|
||||||
|
|
||||||
|
Lemma renaming_up (ξ : nat -> nat) Δ Γ A :
|
||||||
|
renaming_ok Δ Γ ξ ->
|
||||||
|
renaming_ok (cons (ren_PTm ξ A) Δ) (cons A Γ) (upRen_PTm_PTm ξ) .
|
||||||
|
Proof.
|
||||||
|
move => h i A0.
|
||||||
|
elim /lookup_inv => //=_.
|
||||||
|
- move => A1 Γ0 ? [*]. subst. apply here'. by asimpl.
|
||||||
|
- move => i0 Γ0 A1 B h' ? [*]. subst.
|
||||||
|
apply : there'; eauto. by asimpl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Su_Wt Γ a i :
|
||||||
|
Γ ⊢ a ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ≲ a.
|
||||||
|
Proof. hauto lq:on ctrs:LEq, Eq. Qed.
|
||||||
|
|
||||||
|
Lemma Wt_Univ Γ a A i
|
||||||
|
(h : Γ ⊢ a ∈ A) :
|
||||||
|
Γ ⊢ @PUniv i ∈ PUniv (S i).
|
||||||
|
Proof.
|
||||||
|
hauto lq:on ctrs:Wt use:wff_mutual.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Bind_Inv Γ p (A : PTm) B U :
|
||||||
|
Γ ⊢ PBind p A B ∈ U ->
|
||||||
|
exists i, Γ ⊢ A ∈ PUniv i /\
|
||||||
|
(cons A Γ) ⊢ B ∈ PUniv i /\
|
||||||
|
Γ ⊢ PUniv i ≲ U.
|
||||||
|
Proof.
|
||||||
|
move E :(PBind p A B) => T h.
|
||||||
|
move : p A B E.
|
||||||
|
elim : Γ T U / h => //=.
|
||||||
|
- move => Γ i p A B hA _ hB _ p0 A0 B0 [*]. subst.
|
||||||
|
exists i. repeat split => //=.
|
||||||
|
eapply wff_mutual in hA.
|
||||||
|
apply Su_Univ; eauto.
|
||||||
|
- hauto lq:on rew:off ctrs:LEq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma T_App' Γ (b a : PTm) A B U :
|
||||||
|
U = subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ b ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ PApp b a ∈ U.
|
||||||
|
Proof. move => ->. apply T_App. Qed.
|
||||||
|
|
||||||
|
Lemma T_Pair' Γ (a b : PTm ) A B i U :
|
||||||
|
U = subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ b ∈ U ->
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ PPair a b ∈ PBind PSig A B.
|
||||||
|
Proof.
|
||||||
|
move => ->. eauto using T_Pair.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma E_IndCong' Γ P0 P1 (a0 a1 : PTm ) b0 b1 c0 c1 i U :
|
||||||
|
U = subst_PTm (scons a0 VarPTm) P0 ->
|
||||||
|
(cons PNat Γ) ⊢ P0 ∈ PUniv i ->
|
||||||
|
(cons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ PNat ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
||||||
|
(cons P0 (cons PNat Γ)) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
||||||
|
Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ U.
|
||||||
|
Proof. move => ->. apply E_IndCong. Qed.
|
||||||
|
|
||||||
|
Lemma T_Ind' Γ P (a : PTm) b c i U :
|
||||||
|
U = subst_PTm (scons a VarPTm) P ->
|
||||||
|
cons PNat Γ ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
cons P (cons PNat Γ) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P a b c ∈ U.
|
||||||
|
Proof. move =>->. apply T_Ind. Qed.
|
||||||
|
|
||||||
|
Lemma T_Proj2' Γ (a : PTm) A B U :
|
||||||
|
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PR a ∈ U.
|
||||||
|
Proof. move => ->. apply T_Proj2. Qed.
|
||||||
|
|
||||||
|
Lemma E_Proj2' Γ i (a b : PTm) A B U :
|
||||||
|
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ U.
|
||||||
|
Proof. move => ->. apply E_Proj2. Qed.
|
||||||
|
|
||||||
|
Lemma E_Bind' Γ i p (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ A0 ∈ PUniv i ->
|
||||||
|
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||||
|
cons A0 Γ ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||||||
|
Proof. hauto lq:on use:E_Bind, wff_mutual. Qed.
|
||||||
|
|
||||||
|
Lemma E_App' Γ i (b0 b1 a0 a1 : PTm) A B U :
|
||||||
|
U = subst_PTm (scons a0 VarPTm) B ->
|
||||||
|
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||||
|
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ U.
|
||||||
|
Proof. move => ->. apply E_App. Qed.
|
||||||
|
|
||||||
|
Lemma E_AppAbs' Γ (a : PTm) b A B i u U :
|
||||||
|
u = subst_PTm (scons b VarPTm) a ->
|
||||||
|
U = subst_PTm (scons b VarPTm ) B ->
|
||||||
|
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ b ∈ A ->
|
||||||
|
cons A Γ ⊢ a ∈ B ->
|
||||||
|
Γ ⊢ PApp (PAbs a) b ≡ u ∈ U.
|
||||||
|
move => -> ->. apply E_AppAbs. Qed.
|
||||||
|
|
||||||
|
Lemma E_ProjPair2' Γ (a b : PTm) A B i U :
|
||||||
|
U = subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ U.
|
||||||
|
Proof. move => ->. apply E_ProjPair2. Qed.
|
||||||
|
|
||||||
|
(* Lemma E_AppEta' Γ (b : PTm ) A B i u : *)
|
||||||
|
(* u = (PApp (ren_PTm shift b) (VarPTm var_zero)) -> *)
|
||||||
|
(* Γ ⊢ PBind PPi A B ∈ (PUniv i) -> *)
|
||||||
|
(* Γ ⊢ b ∈ PBind PPi A B -> *)
|
||||||
|
(* Γ ⊢ PAbs u ≡ b ∈ PBind PPi A B. *)
|
||||||
|
(* Proof. qauto l:on use:wff_mutual, E_AppEta. Qed. *)
|
||||||
|
|
||||||
|
Lemma Su_Pi_Proj2' Γ (a0 a1 A0 A1 : PTm ) B0 B1 U T :
|
||||||
|
U = subst_PTm (scons a0 VarPTm) B0 ->
|
||||||
|
T = subst_PTm (scons a1 VarPTm) B1 ->
|
||||||
|
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A1 ->
|
||||||
|
Γ ⊢ U ≲ T.
|
||||||
|
Proof. move => -> ->. apply Su_Pi_Proj2. Qed.
|
||||||
|
|
||||||
|
Lemma Su_Sig_Proj2' Γ (a0 a1 A0 A1 : PTm) B0 B1 U T :
|
||||||
|
U = subst_PTm (scons a0 VarPTm) B0 ->
|
||||||
|
T = subst_PTm (scons a1 VarPTm) B1 ->
|
||||||
|
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A0 ->
|
||||||
|
Γ ⊢ U ≲ T.
|
||||||
|
Proof. move => -> ->. apply Su_Sig_Proj2. Qed.
|
||||||
|
|
||||||
|
Lemma E_IndZero' Γ P i (b : PTm) c U :
|
||||||
|
U = subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
cons PNat Γ ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
cons P (cons PNat Γ) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P PZero b c ≡ b ∈ U.
|
||||||
|
Proof. move => ->. apply E_IndZero. Qed.
|
||||||
|
|
||||||
|
Lemma Wff_Cons' Γ (A : PTm) i :
|
||||||
|
Γ ⊢ A ∈ PUniv i ->
|
||||||
|
(* -------------------------------- *)
|
||||||
|
⊢ cons A Γ.
|
||||||
|
Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed.
|
||||||
|
|
||||||
|
Lemma E_IndSuc' Γ P (a : PTm) b c i u U :
|
||||||
|
u = subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c ->
|
||||||
|
U = subst_PTm (scons (PSuc a) VarPTm) P ->
|
||||||
|
cons PNat Γ ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P (PSuc a) b c ≡ u ∈ U.
|
||||||
|
Proof. move => ->->. apply E_IndSuc. Qed.
|
||||||
|
|
||||||
|
Lemma renaming :
|
||||||
|
(forall Γ, ⊢ Γ -> True) /\
|
||||||
|
(forall Γ (a A : PTm), Γ ⊢ a ∈ A -> forall Δ (ξ : nat -> nat), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||||
|
Δ ⊢ ren_PTm ξ a ∈ ren_PTm ξ A) /\
|
||||||
|
(forall Γ (a b A : PTm), Γ ⊢ a ≡ b ∈ A -> forall Δ (ξ : nat -> nat), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||||
|
Δ ⊢ ren_PTm ξ a ≡ ren_PTm ξ b ∈ ren_PTm ξ A) /\
|
||||||
|
(forall Γ (A B : PTm), Γ ⊢ A ≲ B -> forall Δ (ξ : nat -> nat), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||||
|
Δ ⊢ ren_PTm ξ A ≲ ren_PTm ξ B).
|
||||||
|
Proof.
|
||||||
|
apply wt_mutual => //=; eauto 3 with wt.
|
||||||
|
- hauto lq:on rew:off ctrs:Wt, Wff use:renaming_up.
|
||||||
|
- move => Γ a A B i hP ihP ha iha Δ ξ hΔ hξ.
|
||||||
|
apply : T_Abs; eauto.
|
||||||
|
move : ihP(hΔ) (hξ); repeat move/[apply]. move/Bind_Inv.
|
||||||
|
hauto lq:on rew:off ctrs:Wff,Wt use:renaming_up.
|
||||||
|
- move => *. apply : T_App'; eauto. by asimpl.
|
||||||
|
- move => Γ a A b B i hA ihA hB ihB hS ihS Δ ξ hξ hΔ.
|
||||||
|
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||||||
|
- move => Γ a A B ha iha Δ ξ hΔ hξ. apply : T_Proj2'; eauto. by asimpl.
|
||||||
|
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
move => [:hP].
|
||||||
|
apply : T_Ind'; eauto. by asimpl.
|
||||||
|
abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'.
|
||||||
|
hauto l:on use:renaming_up.
|
||||||
|
set x := subst_PTm _ _. have -> : x = ren_PTm ξ (subst_PTm (scons PZero VarPTm) P) by subst x; asimpl.
|
||||||
|
by subst x; eauto.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ. subst Ξ.
|
||||||
|
apply : Wff_Cons'; eauto. apply hP.
|
||||||
|
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
set Ξ' := (cons _ _) .
|
||||||
|
have : renaming_ok Ξ Ξ' (upRen_PTm_PTm (upRen_PTm_PTm ξ)).
|
||||||
|
by do 2 apply renaming_up.
|
||||||
|
move /[swap] /[apply].
|
||||||
|
by asimpl.
|
||||||
|
- hauto lq:on ctrs:Wt,LEq.
|
||||||
|
- hauto lq:on ctrs:Eq.
|
||||||
|
- hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up.
|
||||||
|
- move => *. apply : E_App'; eauto. by asimpl.
|
||||||
|
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||||||
|
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc.
|
||||||
|
move => Δ ξ hΔ hξ [:hP' hren].
|
||||||
|
apply E_IndCong' with (i := i); eauto with wt.
|
||||||
|
by asimpl.
|
||||||
|
apply ihP0.
|
||||||
|
abstract : hP'.
|
||||||
|
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
|
||||||
|
abstract : hren.
|
||||||
|
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
|
||||||
|
apply ihP; eauto with wt.
|
||||||
|
move : ihb (hΔ) (hξ); do! move/[apply]. by asimpl.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ.
|
||||||
|
subst Ξ. apply :Wff_Cons'; eauto.
|
||||||
|
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
move /(_ ltac:(qauto l:on use:renaming_up)).
|
||||||
|
suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ))
|
||||||
|
(ren_PTm shift
|
||||||
|
(subst_PTm
|
||||||
|
(scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P0)) = ren_PTm shift
|
||||||
|
(subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift))
|
||||||
|
(ren_PTm (upRen_PTm_PTm ξ) P0)) by scongruence.
|
||||||
|
by asimpl.
|
||||||
|
- qauto l:on ctrs:Eq, LEq.
|
||||||
|
- move => Γ a b A B i hP ihP hb ihb ha iha Δ ξ hΔ hξ.
|
||||||
|
move : ihP (hξ) (hΔ). repeat move/[apply].
|
||||||
|
move /Bind_Inv.
|
||||||
|
move => [j][h0][h1]h2.
|
||||||
|
have ? : Δ ⊢ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||||||
|
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
|
||||||
|
hauto lq:on ctrs:Wff use:renaming_up.
|
||||||
|
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ξ hΔ hξ.
|
||||||
|
move : {hP} ihP (hξ) (hΔ). repeat move/[apply].
|
||||||
|
move /Bind_Inv => [i0][h0][h1]h2.
|
||||||
|
have ? : Δ ⊢ PBind PSig (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) ∈ PUniv i0 by qauto l:on ctrs:Wt.
|
||||||
|
apply : E_ProjPair1; eauto.
|
||||||
|
move : ihb hξ hΔ. repeat move/[apply]. by asimpl.
|
||||||
|
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ξ hΔ hξ.
|
||||||
|
apply : E_ProjPair2'; eauto. by asimpl.
|
||||||
|
move : ihb hξ hΔ; repeat move/[apply]. by asimpl.
|
||||||
|
- move => Γ P i b c hP ihP hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
apply E_IndZero' with (i := i); eauto. by asimpl.
|
||||||
|
sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Δ ξ hΔ) : ihb.
|
||||||
|
asimpl. by apply.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ by sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
set p := renaming_ok _ _ _.
|
||||||
|
have : p. by do 2 apply renaming_up.
|
||||||
|
move => /[swap]/[apply].
|
||||||
|
suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ))
|
||||||
|
(ren_PTm shift
|
||||||
|
(subst_PTm
|
||||||
|
(scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P))= ren_PTm shift
|
||||||
|
(subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift))
|
||||||
|
(ren_PTm (upRen_PTm_PTm ξ) P)) by scongruence.
|
||||||
|
by asimpl.
|
||||||
|
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
apply E_IndSuc' with (i := i). by asimpl. by asimpl.
|
||||||
|
sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
by eauto with wt.
|
||||||
|
move /(_ Δ ξ hΔ) : ihb. asimpl. by apply.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ by sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
move /(_ ltac:(by eauto using renaming_up)).
|
||||||
|
by asimpl.
|
||||||
|
- move => Γ a b A B i hPi ihPi ha iha hb ihb he0 ihe1 Δ ξ hΔ hξ.
|
||||||
|
apply : E_FunExt; eauto. move : ihe1. asimpl. apply.
|
||||||
|
hfcrush use:Bind_Inv.
|
||||||
|
by apply renaming_up.
|
||||||
|
- move => Γ a b A B i hPi ihPi ha iha hb ihb hL ihL hR ihR Δ ξ hΔ hξ.
|
||||||
|
apply : E_PairExt; eauto. move : ihR. asimpl. by apply.
|
||||||
|
- hauto lq:on ctrs:LEq.
|
||||||
|
- qauto l:on ctrs:LEq.
|
||||||
|
- hauto lq:on ctrs:Wff use:renaming_up, Su_Pi.
|
||||||
|
- hauto lq:on ctrs:Wff use:Su_Sig, renaming_up.
|
||||||
|
- hauto q:on ctrs:LEq.
|
||||||
|
- hauto lq:on ctrs:LEq.
|
||||||
|
- qauto l:on ctrs:LEq.
|
||||||
|
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||||||
|
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition morphing_ok Δ Γ (ρ : nat -> PTm) :=
|
||||||
|
forall i A, lookup i Γ A -> Δ ⊢ ρ i ∈ subst_PTm ρ A.
|
||||||
|
|
||||||
|
Lemma morphing_ren Ξ Δ Γ
|
||||||
|
(ρ : nat -> PTm) (ξ : nat -> nat) :
|
||||||
|
⊢ Ξ ->
|
||||||
|
renaming_ok Ξ Δ ξ -> morphing_ok Δ Γ ρ ->
|
||||||
|
morphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ).
|
||||||
|
Proof.
|
||||||
|
move => hΞ hξ hρ i A.
|
||||||
|
rewrite {1}/funcomp.
|
||||||
|
have -> :
|
||||||
|
subst_PTm (funcomp (ren_PTm ξ) ρ) A =
|
||||||
|
ren_PTm ξ (subst_PTm ρ A) by asimpl.
|
||||||
|
move => ?. eapply renaming; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma morphing_ext Δ Γ (ρ : nat -> PTm) (a : PTm) (A : PTm) :
|
||||||
|
morphing_ok Δ Γ ρ ->
|
||||||
|
Δ ⊢ a ∈ subst_PTm ρ A ->
|
||||||
|
morphing_ok
|
||||||
|
Δ (cons A Γ) (scons a ρ).
|
||||||
|
Proof.
|
||||||
|
move => h ha i B.
|
||||||
|
elim /lookup_inv => //=_.
|
||||||
|
- move => A0 Γ0 ? [*]. subst.
|
||||||
|
by asimpl.
|
||||||
|
- move => i0 Γ0 A0 B0 h0 ? [*]. subst.
|
||||||
|
asimpl. by apply h.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma renaming_wt : forall Γ (a A : PTm), Γ ⊢ a ∈ A -> forall Δ (ξ : nat -> nat), ⊢ Δ -> renaming_ok Δ Γ ξ -> Δ ⊢ ren_PTm ξ a ∈ ren_PTm ξ A.
|
||||||
|
Proof. sfirstorder use:renaming. Qed.
|
||||||
|
|
||||||
|
Lemma renaming_wt' : forall Δ Γ a A (ξ : nat -> nat) u U,
|
||||||
|
u = ren_PTm ξ a -> U = ren_PTm ξ A ->
|
||||||
|
Γ ⊢ a ∈ A -> ⊢ Δ ->
|
||||||
|
renaming_ok Δ Γ ξ -> Δ ⊢ u ∈ U.
|
||||||
|
Proof. hauto use:renaming_wt. Qed.
|
||||||
|
|
||||||
|
Lemma morphing_up Γ Δ (ρ : nat -> PTm) (A : PTm) k :
|
||||||
|
morphing_ok Γ Δ ρ ->
|
||||||
|
Γ ⊢ subst_PTm ρ A ∈ PUniv k ->
|
||||||
|
morphing_ok (cons (subst_PTm ρ A) Γ) (cons A Δ) (up_PTm_PTm ρ).
|
||||||
|
Proof.
|
||||||
|
move => h h1 [:hp]. apply morphing_ext.
|
||||||
|
rewrite /morphing_ok.
|
||||||
|
move => i A0 hA0.
|
||||||
|
apply : renaming_wt'; last by apply renaming_shift.
|
||||||
|
rewrite /funcomp. reflexivity.
|
||||||
|
2 : { eauto. }
|
||||||
|
by asimpl.
|
||||||
|
abstract : hp. qauto l:on ctrs:Wff use:wff_mutual.
|
||||||
|
apply : T_Var;eauto. apply here'. by asimpl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma weakening_wt : forall Γ (a A B : PTm) i,
|
||||||
|
Γ ⊢ B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
cons B Γ ⊢ ren_PTm shift a ∈ ren_PTm shift A.
|
||||||
|
Proof.
|
||||||
|
move => Γ a A B i hB ha.
|
||||||
|
apply : renaming_wt'; eauto.
|
||||||
|
apply : Wff_Cons'; eauto.
|
||||||
|
apply : renaming_shift; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma weakening_wt' : forall Γ (a A B : PTm) i U u,
|
||||||
|
u = ren_PTm shift a ->
|
||||||
|
U = ren_PTm shift A ->
|
||||||
|
Γ ⊢ B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
cons B Γ ⊢ u ∈ U.
|
||||||
|
Proof. move => > -> ->. apply weakening_wt. Qed.
|
||||||
|
|
||||||
|
Lemma morphing :
|
||||||
|
(forall Γ, ⊢ Γ -> True) /\
|
||||||
|
(forall Γ a A, Γ ⊢ a ∈ A -> forall Δ ρ, ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||||||
|
Δ ⊢ subst_PTm ρ a ∈ subst_PTm ρ A) /\
|
||||||
|
(forall Γ a b A, Γ ⊢ a ≡ b ∈ A -> forall Δ ρ, ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||||||
|
Δ ⊢ subst_PTm ρ a ≡ subst_PTm ρ b ∈ subst_PTm ρ A) /\
|
||||||
|
(forall Γ A B, Γ ⊢ A ≲ B -> forall Δ ρ, ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||||||
|
Δ ⊢ subst_PTm ρ A ≲ subst_PTm ρ B).
|
||||||
|
Proof.
|
||||||
|
apply wt_mutual => //=.
|
||||||
|
- hauto l:on unfold:morphing_ok.
|
||||||
|
- hauto lq:on use:morphing_up, Wff_Cons', T_Bind.
|
||||||
|
- move => Γ a A B i hP ihP ha iha Δ ρ hΔ hρ.
|
||||||
|
move : ihP (hΔ) (hρ); repeat move/[apply].
|
||||||
|
move /Bind_Inv => [j][h0][h1]h2. move {hP}.
|
||||||
|
have ? : Δ ⊢ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv i by hauto lq:on ctrs:Wt.
|
||||||
|
apply : T_Abs; eauto.
|
||||||
|
apply : iha.
|
||||||
|
hauto lq:on use:Wff_Cons', Bind_Inv.
|
||||||
|
apply : morphing_up; eauto.
|
||||||
|
- move => *; apply : T_App'; eauto; by asimpl.
|
||||||
|
- move => Γ a A b B i hA ihA hB ihB hS ihS Δ ρ hρ hΔ.
|
||||||
|
eapply T_Pair' with (U := subst_PTm ρ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||||||
|
- hauto lq:on use:T_Proj1.
|
||||||
|
- move => *. apply : T_Proj2'; eauto. by asimpl.
|
||||||
|
- hauto lq:on ctrs:Wt,LEq.
|
||||||
|
- qauto l:on ctrs:Wt.
|
||||||
|
- qauto l:on ctrs:Wt.
|
||||||
|
- qauto l:on ctrs:Wt.
|
||||||
|
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
have hξ' : morphing_ok (cons PNat Δ) (cons PNat Γ) (up_PTm_PTm ξ).
|
||||||
|
move /morphing_up : hξ. move /(_ PNat 0).
|
||||||
|
apply. by apply T_Nat.
|
||||||
|
move => [:hP].
|
||||||
|
apply : T_Ind'; eauto. by asimpl.
|
||||||
|
abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'.
|
||||||
|
move /morphing_up : hξ. move /(_ PNat 0).
|
||||||
|
apply. by apply T_Nat.
|
||||||
|
move : ihb hξ hΔ; do!move/[apply]. by asimpl.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ. subst Ξ.
|
||||||
|
apply : Wff_Cons'; eauto. apply hP.
|
||||||
|
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
set Ξ' := (cons _ _) .
|
||||||
|
have : morphing_ok Ξ Ξ' (up_PTm_PTm (up_PTm_PTm ξ)).
|
||||||
|
eapply morphing_up; eauto. apply hP.
|
||||||
|
move /[swap]/[apply].
|
||||||
|
set x := (x in _ ⊢ _ ∈ x).
|
||||||
|
set y := (y in _ -> _ ⊢ _ ∈ y).
|
||||||
|
suff : x = y by scongruence.
|
||||||
|
subst x y. asimpl. substify. by asimpl.
|
||||||
|
- qauto l:on ctrs:Wt.
|
||||||
|
- hauto lq:on ctrs:Eq.
|
||||||
|
- hauto lq:on ctrs:Eq.
|
||||||
|
- hauto lq:on ctrs:Eq.
|
||||||
|
- hauto lq:on rew:off use:E_Bind', Wff_Cons, morphing_up.
|
||||||
|
- move => *. apply : E_App'; eauto. by asimpl.
|
||||||
|
- hauto q:on ctrs:Eq.
|
||||||
|
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||||||
|
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc.
|
||||||
|
move => Δ ξ hΔ hξ.
|
||||||
|
have hξ' : morphing_ok (cons PNat Δ)
|
||||||
|
(cons PNat Γ) (up_PTm_PTm ξ).
|
||||||
|
move /morphing_up : hξ. move /(_ PNat 0).
|
||||||
|
apply. by apply T_Nat.
|
||||||
|
move => [:hP'].
|
||||||
|
apply E_IndCong' with (i := i).
|
||||||
|
by asimpl.
|
||||||
|
abstract : hP'.
|
||||||
|
qauto l:on use:morphing_up, Wff_Cons', T_Nat'.
|
||||||
|
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
|
||||||
|
by eauto with wt.
|
||||||
|
move : ihb (hΔ) (hξ); do! move/[apply]. by asimpl.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ.
|
||||||
|
subst Ξ. apply :Wff_Cons'; eauto. apply hP'.
|
||||||
|
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
move /(_ ltac:(qauto l:on use:morphing_up)).
|
||||||
|
asimpl. substify. by asimpl.
|
||||||
|
- eauto with wt.
|
||||||
|
- qauto l:on ctrs:Eq, LEq.
|
||||||
|
- move => Γ a b A B i hP ihP hb ihb ha iha Δ ρ hΔ hρ.
|
||||||
|
move : ihP (hρ) (hΔ). repeat move/[apply].
|
||||||
|
move /Bind_Inv.
|
||||||
|
move => [j][h0][h1]h2.
|
||||||
|
have ? : Δ ⊢ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||||||
|
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
|
||||||
|
hauto lq:on ctrs:Wff use:morphing_up.
|
||||||
|
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ρ hΔ hρ.
|
||||||
|
move : {hP} ihP (hρ) (hΔ). repeat move/[apply].
|
||||||
|
move /Bind_Inv => [i0][h0][h1]h2.
|
||||||
|
have ? : Δ ⊢ PBind PSig (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv i0 by qauto l:on ctrs:Wt.
|
||||||
|
apply : E_ProjPair1; eauto.
|
||||||
|
move : ihb hρ hΔ. repeat move/[apply]. by asimpl.
|
||||||
|
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ρ hΔ hρ.
|
||||||
|
apply : E_ProjPair2'; eauto. by asimpl.
|
||||||
|
move : ihb hρ hΔ; repeat move/[apply]. by asimpl.
|
||||||
|
- move => Γ P i b c hP ihP hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
have hξ' : morphing_ok (cons PNat Δ)(cons PNat Γ) (up_PTm_PTm ξ).
|
||||||
|
move /morphing_up : hξ. move /(_ PNat 0).
|
||||||
|
apply. by apply T_Nat.
|
||||||
|
apply E_IndZero' with (i := i); eauto. by asimpl.
|
||||||
|
qauto l:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Δ ξ hΔ) : ihb.
|
||||||
|
asimpl. by apply.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
move /(_ ltac:(sauto lq:on use:morphing_up)).
|
||||||
|
asimpl. substify. by asimpl.
|
||||||
|
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ hΔ hξ.
|
||||||
|
have hξ' : morphing_ok (cons PNat Δ) (cons PNat Γ) (up_PTm_PTm ξ).
|
||||||
|
move /morphing_up : hξ. move /(_ PNat 0).
|
||||||
|
apply. by apply T_Nat'.
|
||||||
|
apply E_IndSuc' with (i := i). by asimpl. by asimpl.
|
||||||
|
qauto l:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
by eauto with wt.
|
||||||
|
move /(_ Δ ξ hΔ) : ihb. asimpl. by apply.
|
||||||
|
set Ξ := cons _ _.
|
||||||
|
have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up.
|
||||||
|
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc.
|
||||||
|
move /(_ ltac:(sauto l:on use:morphing_up)).
|
||||||
|
asimpl. substify. by asimpl.
|
||||||
|
- move => Γ a b A B i hPi ihPi ha iha hb ihb he0 ihe1 Δ ξ hΔ hξ.
|
||||||
|
move : ihPi (hΔ) (hξ); repeat move/[apply]. move /[dup] /Bind_Inv => ihPi ?.
|
||||||
|
decompose [and ex] ihPi.
|
||||||
|
apply : E_FunExt; eauto. move : ihe1. asimpl. apply.
|
||||||
|
by eauto with wt.
|
||||||
|
by eauto using morphing_up with wt.
|
||||||
|
- move => Γ a b A B i hPi ihPi ha iha hb ihb hL ihL hR ihR Δ ξ hΔ hξ.
|
||||||
|
apply : E_PairExt; eauto. move : ihR. asimpl. by apply.
|
||||||
|
- hauto lq:on ctrs:LEq.
|
||||||
|
- qauto l:on ctrs:LEq.
|
||||||
|
- hauto lq:on ctrs:Wff use:morphing_up, Su_Pi.
|
||||||
|
- hauto lq:on ctrs:Wff use:Su_Sig, morphing_up.
|
||||||
|
- hauto q:on ctrs:LEq.
|
||||||
|
- hauto lq:on ctrs:LEq.
|
||||||
|
- qauto l:on ctrs:LEq.
|
||||||
|
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||||||
|
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma morphing_wt : forall Γ (a A : PTm ), Γ ⊢ a ∈ A -> forall Δ (ρ : nat -> PTm), ⊢ Δ -> morphing_ok Δ Γ ρ -> Δ ⊢ subst_PTm ρ a ∈ subst_PTm ρ A.
|
||||||
|
Proof. sfirstorder use:morphing. Qed.
|
||||||
|
|
||||||
|
Lemma morphing_wt' : forall Δ Γ a A (ρ : nat -> PTm) u U,
|
||||||
|
u = subst_PTm ρ a -> U = subst_PTm ρ A ->
|
||||||
|
Γ ⊢ a ∈ A -> ⊢ Δ ->
|
||||||
|
morphing_ok Δ Γ ρ -> Δ ⊢ u ∈ U.
|
||||||
|
Proof. hauto use:morphing_wt. Qed.
|
||||||
|
|
||||||
|
Lemma morphing_id : forall Γ, ⊢ Γ -> morphing_ok Γ Γ VarPTm.
|
||||||
|
Proof.
|
||||||
|
rewrite /morphing_ok => Γ hΓ i. asimpl.
|
||||||
|
eauto using T_Var.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma substing_wt : forall Γ (a : PTm) (b A : PTm) B,
|
||||||
|
(cons A Γ) ⊢ a ∈ B ->
|
||||||
|
Γ ⊢ b ∈ A ->
|
||||||
|
Γ ⊢ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm) B.
|
||||||
|
Proof.
|
||||||
|
move => Γ a b A B ha hb [:hΓ]. apply : morphing_wt; eauto.
|
||||||
|
abstract : hΓ. sfirstorder use:wff_mutual.
|
||||||
|
apply morphing_ext; last by asimpl.
|
||||||
|
by apply morphing_id.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(* Could generalize to all equal contexts *)
|
||||||
|
Lemma ctx_eq_subst_one (A0 A1 : PTm) i j Γ a A :
|
||||||
|
(cons A0 Γ) ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ A0 ∈ PUniv i ->
|
||||||
|
Γ ⊢ A1 ∈ PUniv j ->
|
||||||
|
Γ ⊢ A1 ≲ A0 ->
|
||||||
|
(cons A1 Γ) ⊢ a ∈ A.
|
||||||
|
Proof.
|
||||||
|
move => h0 h1 h2 h3.
|
||||||
|
replace a with (subst_PTm VarPTm a); last by asimpl.
|
||||||
|
replace A with (subst_PTm VarPTm A); last by asimpl.
|
||||||
|
have ? : ⊢ Γ by sfirstorder use:wff_mutual.
|
||||||
|
apply : morphing_wt; eauto.
|
||||||
|
apply : Wff_Cons'; eauto.
|
||||||
|
move => k A2. elim/lookup_inv => //=_; cycle 1.
|
||||||
|
- move => i0 Γ0 A3 B hi ? [*]. subst.
|
||||||
|
asimpl.
|
||||||
|
eapply weakening_wt' with (a := VarPTm i0);eauto using T_Var.
|
||||||
|
by substify.
|
||||||
|
- move => A3 Γ0 ? [*]. subst.
|
||||||
|
move => [:hΓ'].
|
||||||
|
apply : T_Conv.
|
||||||
|
apply T_Var.
|
||||||
|
abstract : hΓ'.
|
||||||
|
eauto using Wff_Cons'. apply here.
|
||||||
|
asimpl. renamify.
|
||||||
|
eapply renaming; eauto.
|
||||||
|
apply : renaming_shift; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma bind_inst Γ p (A : PTm) B i a0 a1 :
|
||||||
|
Γ ⊢ PBind p A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||||
|
Γ ⊢ subst_PTm (scons a0 VarPTm) B ≲ subst_PTm (scons a1 VarPTm) B.
|
||||||
|
Proof.
|
||||||
|
move => h h0.
|
||||||
|
have {}h : Γ ⊢ PBind p A B ≲ PBind p A B by eauto using E_Refl, Su_Eq.
|
||||||
|
case : p h => //=; hauto l:on use:Su_Pi_Proj2, Su_Sig_Proj2.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Cumulativity Γ (a : PTm ) i j :
|
||||||
|
i <= j ->
|
||||||
|
Γ ⊢ a ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PUniv j.
|
||||||
|
Proof.
|
||||||
|
move => h0 h1. apply : T_Conv; eauto.
|
||||||
|
apply Su_Univ => //=.
|
||||||
|
sfirstorder use:wff_mutual.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma T_Bind' Γ i j p (A : PTm ) (B : PTm) :
|
||||||
|
Γ ⊢ A ∈ PUniv i ->
|
||||||
|
(cons A Γ) ⊢ B ∈ PUniv j ->
|
||||||
|
Γ ⊢ PBind p A B ∈ PUniv (max i j).
|
||||||
|
Proof.
|
||||||
|
move => h0 h1.
|
||||||
|
have [*] : i <= max i j /\ j <= max i j by lia.
|
||||||
|
qauto l:on ctrs:Wt use:Cumulativity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Hint Resolve T_Bind' : wt.
|
||||||
|
|
||||||
|
Lemma regularity :
|
||||||
|
(forall Γ, ⊢ Γ -> forall i A, lookup i Γ A -> exists j, Γ ⊢ A ∈ PUniv j) /\
|
||||||
|
(forall Γ a A, Γ ⊢ a ∈ A -> exists i, Γ ⊢ A ∈ PUniv i) /\
|
||||||
|
(forall Γ a b A, Γ ⊢ a ≡ b ∈ A -> Γ ⊢ a ∈ A /\ Γ ⊢ b ∈ A /\ exists i, Γ ⊢ A ∈ PUniv i) /\
|
||||||
|
(forall Γ A B, Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i /\ Γ ⊢ B ∈ PUniv i).
|
||||||
|
Proof.
|
||||||
|
apply wt_mutual => //=; eauto with wt.
|
||||||
|
- move => i A. elim/lookup_inv => //=_.
|
||||||
|
- move => Γ A i hΓ ihΓ hA _ j A0.
|
||||||
|
elim /lookup_inv => //=_; cycle 1.
|
||||||
|
+ move => i0 Γ0 A1 B + ? [*]. subst.
|
||||||
|
move : ihΓ => /[apply]. move => [j hA1].
|
||||||
|
exists j. apply : renaming_wt' => //=; eauto using renaming_shift. done.
|
||||||
|
apply : Wff_Cons'; eauto.
|
||||||
|
+ move => A1 Γ0 ? [*]. subst.
|
||||||
|
exists i. apply : renaming_wt'; eauto. reflexivity.
|
||||||
|
econstructor; eauto.
|
||||||
|
apply : renaming_shift; eauto.
|
||||||
|
- move => Γ b a A B hb [i ihb] ha [j iha].
|
||||||
|
move /Bind_Inv : ihb => [k][h0][h1]h2.
|
||||||
|
move : substing_wt ha h1; repeat move/[apply].
|
||||||
|
move => h. exists k.
|
||||||
|
move : h. by asimpl.
|
||||||
|
- hauto lq:on use:Bind_Inv.
|
||||||
|
- move => Γ a A B ha [i /Bind_Inv[j][h0][h1]h2].
|
||||||
|
exists j. have : Γ ⊢ PProj PL a ∈ A by qauto use:T_Proj1.
|
||||||
|
move : substing_wt h1; repeat move/[apply].
|
||||||
|
by asimpl.
|
||||||
|
- move => Γ P a b c i + ? + *. clear. move => h ha. exists i.
|
||||||
|
hauto lq:on use:substing_wt.
|
||||||
|
- sfirstorder.
|
||||||
|
- sfirstorder.
|
||||||
|
- sfirstorder.
|
||||||
|
- move => Γ i p A0 A1 B0 B1 hΓ ihΓ hA0
|
||||||
|
[i0 ihA0] hA [ihA [ihA' [i1 ihA'']]].
|
||||||
|
repeat split => //=.
|
||||||
|
qauto use:T_Bind.
|
||||||
|
apply T_Bind; eauto.
|
||||||
|
sfirstorder.
|
||||||
|
apply : ctx_eq_subst_one; eauto using Su_Eq, E_Symmetric.
|
||||||
|
hauto lq:on.
|
||||||
|
- move => n i b0 b1 a0 a1 A B hP _ hb [ihb0 [ihb1 [i0 ihb2]]]
|
||||||
|
ha [iha0 [iha1 [i1 iha2]]].
|
||||||
|
repeat split.
|
||||||
|
qauto use:T_App.
|
||||||
|
apply : T_Conv; eauto.
|
||||||
|
qauto use:T_App.
|
||||||
|
move /E_Symmetric in ha.
|
||||||
|
by eauto using bind_inst.
|
||||||
|
hauto lq:on ctrs:Wt,Eq,LEq lq:on use:Bind_Inv, substing_wt.
|
||||||
|
- hauto lq:on use:Bind_Inv db:wt.
|
||||||
|
- move => Γ i a b A B hS _ hab [iha][ihb][j]ihs.
|
||||||
|
repeat split => //=; eauto with wt.
|
||||||
|
apply : T_Conv; eauto with wt.
|
||||||
|
move /E_Symmetric /E_Proj1 in hab.
|
||||||
|
eauto using bind_inst.
|
||||||
|
move /T_Proj1 in iha.
|
||||||
|
hauto lq:on ctrs:Wt,Eq,LEq use:Bind_Inv, substing_wt.
|
||||||
|
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i _ _ hPE [hP0 [hP1 _]] hae [ha0 [ha1 _]] _ [hb0 [hb1 hb2]] _ [hc0 [hc1 [j hc2]]].
|
||||||
|
have wfΓ : ⊢ Γ by hauto use:wff_mutual.
|
||||||
|
have wfΓ' : ⊢ (PNat :: Γ) by qauto use:Wff_Cons', T_Nat'.
|
||||||
|
repeat split. by eauto using T_Ind.
|
||||||
|
apply : T_Conv. apply : T_Ind; eauto.
|
||||||
|
apply : T_Conv; eauto.
|
||||||
|
eapply morphing; by eauto using Su_Eq, morphing_ext, morphing_id with wt.
|
||||||
|
apply : T_Conv. apply : ctx_eq_subst_one; eauto.
|
||||||
|
by eauto using Su_Eq, E_Symmetric.
|
||||||
|
eapply renaming; eauto.
|
||||||
|
eapply morphing. apply : Su_Eq. apply hPE. apply wfΓ'.
|
||||||
|
apply morphing_ext.
|
||||||
|
replace (funcomp VarPTm shift) with (funcomp (@ren_PTm shift) VarPTm); last by asimpl.
|
||||||
|
apply : morphing_ren; eauto using morphing_id, renaming_shift.
|
||||||
|
apply T_Suc. apply T_Var=>//. apply here. apply : Wff_Cons'; eauto using T_Nat'.
|
||||||
|
apply renaming_shift.
|
||||||
|
have /E_Symmetric /Su_Eq : Γ ⊢ PBind PSig PNat P0 ≡ PBind PSig PNat P1 ∈ PUniv i by eauto with wt.
|
||||||
|
move /E_Symmetric in hae.
|
||||||
|
by eauto using Su_Sig_Proj2.
|
||||||
|
sauto lq:on use:substing_wt.
|
||||||
|
- hauto lq:on ctrs:Wt.
|
||||||
|
- hauto lq:on ctrs:Wt.
|
||||||
|
- hauto q:on use:substing_wt db:wt.
|
||||||
|
- hauto l:on use:bind_inst db:wt.
|
||||||
|
- move => Γ P i b c hP _ hb _ hc _.
|
||||||
|
have ? : ⊢ Γ by hauto use:wff_mutual.
|
||||||
|
repeat split=>//.
|
||||||
|
by eauto with wt.
|
||||||
|
sauto lq:on use:substing_wt.
|
||||||
|
- move => Γ P a b c i hP _ ha _ hb _ hc _.
|
||||||
|
have ? : ⊢ Γ by hauto use:wff_mutual.
|
||||||
|
repeat split=>//.
|
||||||
|
apply : T_Ind; eauto with wt.
|
||||||
|
set Ξ := (X in X ⊢ _ ∈ _) in hc.
|
||||||
|
have : morphing_ok Γ Ξ (scons (PInd P a b c) (scons a VarPTm)).
|
||||||
|
apply morphing_ext. apply morphing_ext. by apply morphing_id.
|
||||||
|
by eauto. by eauto with wt.
|
||||||
|
subst Ξ.
|
||||||
|
move : morphing_wt hc; repeat move/[apply]. asimpl. by apply.
|
||||||
|
sauto lq:on use:substing_wt.
|
||||||
|
- move => Γ A B C hA [i [ihA0 ihA1]] hC [j [ihC0 ihC1]].
|
||||||
|
have ? : ⊢ Γ by sfirstorder use:wff_mutual.
|
||||||
|
exists (max i j).
|
||||||
|
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
|
||||||
|
qauto l:on use:T_Conv, Su_Univ.
|
||||||
|
- move => Γ i j hΓ *. exists (S (max i j)).
|
||||||
|
have [? ?] : S i <= S (Nat.max i j) /\ S j <= S (Nat.max i j) by lia.
|
||||||
|
hauto lq:on ctrs:Wt,LEq.
|
||||||
|
- move => Γ A0 A1 B0 B1 i hA0 _ hA1 [i0][ih0]ih1 hB[j0][ihB0]ihB1.
|
||||||
|
exists (max i0 j0).
|
||||||
|
split; eauto with wt.
|
||||||
|
apply T_Bind'; eauto.
|
||||||
|
sfirstorder use:ctx_eq_subst_one.
|
||||||
|
- move => n A0 A1 B0 B1 i hA1 _ hA0 [i0][ihA0]ihA1 hB[i1][ihB0]ihB1.
|
||||||
|
exists (max i0 i1). repeat split; eauto with wt.
|
||||||
|
apply T_Bind'; eauto.
|
||||||
|
sfirstorder use:ctx_eq_subst_one.
|
||||||
|
- sfirstorder.
|
||||||
|
- move => Γ A0 A1 B0 B1 _ [i][ih0 ih1].
|
||||||
|
move /Bind_Inv : ih0 => [i0][h _].
|
||||||
|
move /Bind_Inv : ih1 => [i1][h' _].
|
||||||
|
exists (max i0 i1).
|
||||||
|
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
|
||||||
|
eauto using Cumulativity.
|
||||||
|
- move => Γ A0 A1 B0 B1 _ [i][ih0 ih1].
|
||||||
|
move /Bind_Inv : ih0 => [i0][h _].
|
||||||
|
move /Bind_Inv : ih1 => [i1][h' _].
|
||||||
|
exists (max i0 i1).
|
||||||
|
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
|
||||||
|
eauto using Cumulativity.
|
||||||
|
- move => Γ a0 a1 A0 A1 B0 B1 /Su_Pi_Proj1 hA1.
|
||||||
|
move => [i][ihP0]ihP1.
|
||||||
|
move => ha [iha0][iha1][j]ihA1.
|
||||||
|
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
|
||||||
|
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
|
||||||
|
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
|
||||||
|
exists (max i0 i1).
|
||||||
|
split.
|
||||||
|
+ apply Cumulativity with (i := i0); eauto.
|
||||||
|
have : Γ ⊢ a0 ∈ A0 by eauto using T_Conv.
|
||||||
|
move : substing_wt ih0';repeat move/[apply]. by asimpl.
|
||||||
|
+ apply Cumulativity with (i := i1); eauto.
|
||||||
|
move : substing_wt ih1' iha1;repeat move/[apply]. by asimpl.
|
||||||
|
- move => Γ a0 a1 A0 A1 B0 B1 /Su_Sig_Proj1 hA1.
|
||||||
|
move => [i][ihP0]ihP1.
|
||||||
|
move => ha [iha0][iha1][j]ihA1.
|
||||||
|
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
|
||||||
|
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
|
||||||
|
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
|
||||||
|
exists (max i0 i1).
|
||||||
|
split.
|
||||||
|
+ apply Cumulativity with (i := i0); eauto.
|
||||||
|
move : substing_wt iha0 ih0';repeat move/[apply]. by asimpl.
|
||||||
|
+ apply Cumulativity with (i := i1); eauto.
|
||||||
|
have : Γ ⊢ a1 ∈ A1 by eauto using T_Conv.
|
||||||
|
move : substing_wt ih1';repeat move/[apply]. by asimpl.
|
||||||
|
Unshelve. all: exact 0.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Var_Inv Γ (i : nat) A :
|
||||||
|
Γ ⊢ VarPTm i ∈ A ->
|
||||||
|
⊢ Γ /\ exists B, lookup i Γ B /\ Γ ⊢ B ≲ A.
|
||||||
|
Proof.
|
||||||
|
move E : (VarPTm i) => u hu.
|
||||||
|
move : i E.
|
||||||
|
elim : Γ u A / hu=>//=.
|
||||||
|
- move => i Γ A hΓ hi i0 [*]. subst.
|
||||||
|
split => //.
|
||||||
|
exists A. split => //.
|
||||||
|
have h : Γ ⊢ VarPTm i ∈ A by eauto using T_Var.
|
||||||
|
eapply regularity in h.
|
||||||
|
move : h => [i0]?.
|
||||||
|
apply : Su_Eq. apply E_Refl; eassumption.
|
||||||
|
- sfirstorder use:Su_Transitive.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma renaming_su' : forall Δ Γ ξ (A B : PTm) u U ,
|
||||||
|
u = ren_PTm ξ A ->
|
||||||
|
U = ren_PTm ξ B ->
|
||||||
|
Γ ⊢ A ≲ B ->
|
||||||
|
⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||||
|
Δ ⊢ u ≲ U.
|
||||||
|
Proof. move => > -> ->. hauto l:on use:renaming. Qed.
|
||||||
|
|
||||||
|
Lemma weakening_su : forall Γ (A0 A1 B : PTm) i,
|
||||||
|
Γ ⊢ B ∈ PUniv i ->
|
||||||
|
Γ ⊢ A0 ≲ A1 ->
|
||||||
|
(cons B Γ) ⊢ ren_PTm shift A0 ≲ ren_PTm shift A1.
|
||||||
|
Proof.
|
||||||
|
move => Γ A0 A1 B i hB hlt.
|
||||||
|
apply : renaming_su'; eauto.
|
||||||
|
apply : Wff_Cons'; eauto.
|
||||||
|
apply : renaming_shift; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma regularity_sub0 : forall Γ (A B : PTm), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i.
|
||||||
|
Proof. hauto lq:on use:regularity. Qed.
|
||||||
|
|
||||||
|
Lemma Su_Pi_Proj2_Var Γ (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||||
|
cons A1 Γ ⊢ B0 ≲ B1.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have /Su_Pi_Proj1 h1 := h.
|
||||||
|
have /regularity_sub0 [i h2] := h1.
|
||||||
|
move /weakening_su : (h) h2. move => /[apply].
|
||||||
|
move => h2.
|
||||||
|
apply : Su_Pi_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
|
||||||
|
apply E_Refl. apply T_Var with (i := var_zero); eauto.
|
||||||
|
sfirstorder use:wff_mutual.
|
||||||
|
apply here.
|
||||||
|
by asimpl; rewrite subst_scons_id.
|
||||||
|
by asimpl; rewrite subst_scons_id.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma Su_Sig_Proj2_Var Γ (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||||
|
(cons A0 Γ) ⊢ B0 ≲ B1.
|
||||||
|
Proof.
|
||||||
|
move => h.
|
||||||
|
have /Su_Sig_Proj1 h1 := h.
|
||||||
|
have /regularity_sub0 [i h2] := h1.
|
||||||
|
move /weakening_su : (h) h2. move => /[apply].
|
||||||
|
move => h2.
|
||||||
|
apply : Su_Sig_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
|
||||||
|
apply E_Refl. apply T_Var with (i := var_zero); eauto.
|
||||||
|
sfirstorder use:wff_mutual.
|
||||||
|
apply here.
|
||||||
|
by asimpl; rewrite subst_scons_id.
|
||||||
|
by asimpl; rewrite subst_scons_id.
|
||||||
|
Qed.
|
5
theories/termination.v
Normal file
5
theories/termination.v
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
|
||||||
|
From Hammer Require Import Tactics.
|
||||||
|
Require Import ssreflect ssrbool.
|
||||||
|
From stdpp Require Import relations (nsteps (..), rtc(..)).
|
||||||
|
Import Psatz.
|
237
theories/typing.v
Normal file
237
theories/typing.v
Normal file
|
@ -0,0 +1,237 @@
|
||||||
|
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
|
||||||
|
|
||||||
|
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
|
||||||
|
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
|
||||||
|
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
|
||||||
|
Reserved Notation "⊢ Γ" (at level 70).
|
||||||
|
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
|
||||||
|
| T_Var i Γ A :
|
||||||
|
⊢ Γ ->
|
||||||
|
lookup i Γ A ->
|
||||||
|
Γ ⊢ VarPTm i ∈ A
|
||||||
|
|
||||||
|
| T_Bind Γ i p (A : PTm) (B : PTm) :
|
||||||
|
Γ ⊢ A ∈ PUniv i ->
|
||||||
|
cons A Γ ⊢ B ∈ PUniv i ->
|
||||||
|
Γ ⊢ PBind p A B ∈ PUniv i
|
||||||
|
|
||||||
|
| T_Abs Γ (a : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||||
|
(cons A Γ) ⊢ a ∈ B ->
|
||||||
|
Γ ⊢ PAbs a ∈ PBind PPi A B
|
||||||
|
|
||||||
|
| T_App Γ (b a : PTm) A B :
|
||||||
|
Γ ⊢ b ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ PApp b a ∈ subst_PTm (scons a VarPTm) B
|
||||||
|
|
||||||
|
| T_Pair Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ PPair a b ∈ PBind PSig A B
|
||||||
|
|
||||||
|
| T_Proj1 Γ (a : PTm) A B :
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PL a ∈ A
|
||||||
|
|
||||||
|
| T_Proj2 Γ (a : PTm) A B :
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
||||||
|
|
||||||
|
| T_Univ Γ i :
|
||||||
|
⊢ Γ ->
|
||||||
|
Γ ⊢ PUniv i ∈ PUniv (S i)
|
||||||
|
|
||||||
|
| T_Nat Γ i :
|
||||||
|
⊢ Γ ->
|
||||||
|
Γ ⊢ PNat ∈ PUniv i
|
||||||
|
|
||||||
|
| T_Zero Γ :
|
||||||
|
⊢ Γ ->
|
||||||
|
Γ ⊢ PZero ∈ PNat
|
||||||
|
|
||||||
|
| T_Suc Γ (a : PTm) :
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ PSuc a ∈ PNat
|
||||||
|
|
||||||
|
| T_Ind Γ P (a : PTm) b c i :
|
||||||
|
cons PNat Γ ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P a b c ∈ subst_PTm (scons a VarPTm) P
|
||||||
|
|
||||||
|
| T_Conv Γ (a : PTm) A B :
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ A ≲ B ->
|
||||||
|
Γ ⊢ a ∈ B
|
||||||
|
|
||||||
|
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
|
||||||
|
(* Structural *)
|
||||||
|
| E_Refl Γ (a : PTm ) A :
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ a ≡ a ∈ A
|
||||||
|
|
||||||
|
| E_Symmetric Γ (a b : PTm) A :
|
||||||
|
Γ ⊢ a ≡ b ∈ A ->
|
||||||
|
Γ ⊢ b ≡ a ∈ A
|
||||||
|
|
||||||
|
| E_Transitive Γ (a b c : PTm) A :
|
||||||
|
Γ ⊢ a ≡ b ∈ A ->
|
||||||
|
Γ ⊢ b ≡ c ∈ A ->
|
||||||
|
Γ ⊢ a ≡ c ∈ A
|
||||||
|
|
||||||
|
(* Congruence *)
|
||||||
|
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ A0 ∈ PUniv i ->
|
||||||
|
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||||
|
(cons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i
|
||||||
|
|
||||||
|
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
|
||||||
|
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||||
|
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B
|
||||||
|
|
||||||
|
| E_Proj1 Γ (a b : PTm) A B :
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A
|
||||||
|
|
||||||
|
| E_Proj2 Γ i (a b : PTm) A B :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
||||||
|
|
||||||
|
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
|
||||||
|
(cons PNat Γ) ⊢ P0 ∈ PUniv i ->
|
||||||
|
(cons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ PNat ->
|
||||||
|
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
||||||
|
(cons P0 ((cons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
||||||
|
Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0
|
||||||
|
|
||||||
|
| E_SucCong Γ (a b : PTm) :
|
||||||
|
Γ ⊢ a ≡ b ∈ PNat ->
|
||||||
|
Γ ⊢ PSuc a ≡ PSuc b ∈ PNat
|
||||||
|
|
||||||
|
| E_Conv Γ (a b : PTm) A B :
|
||||||
|
Γ ⊢ a ≡ b ∈ A ->
|
||||||
|
Γ ⊢ A ≲ B ->
|
||||||
|
Γ ⊢ a ≡ b ∈ B
|
||||||
|
|
||||||
|
(* Beta *)
|
||||||
|
| E_AppAbs Γ (a : PTm) b A B i:
|
||||||
|
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ b ∈ A ->
|
||||||
|
(cons A Γ) ⊢ a ∈ B ->
|
||||||
|
Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B
|
||||||
|
|
||||||
|
| E_ProjPair1 Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A
|
||||||
|
|
||||||
|
| E_ProjPair2 Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||||
|
Γ ⊢ a ∈ A ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||||
|
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B
|
||||||
|
|
||||||
|
| E_IndZero Γ P i (b : PTm) c :
|
||||||
|
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P
|
||||||
|
|
||||||
|
| E_IndSuc Γ P (a : PTm) b c i :
|
||||||
|
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PNat ->
|
||||||
|
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||||
|
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||||
|
Γ ⊢ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P
|
||||||
|
|
||||||
|
| E_FunExt Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PBind PPi A B ->
|
||||||
|
Γ ⊢ b ∈ PBind PPi A B ->
|
||||||
|
A :: Γ ⊢ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PPi A B
|
||||||
|
|
||||||
|
| E_PairExt Γ (a b : PTm) A B i :
|
||||||
|
Γ ⊢ PBind PSig A B ∈ PUniv i ->
|
||||||
|
Γ ⊢ a ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ b ∈ PBind PSig A B ->
|
||||||
|
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A ->
|
||||||
|
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||||
|
Γ ⊢ a ≡ b ∈ PBind PSig A B
|
||||||
|
|
||||||
|
with LEq : list PTm -> PTm -> PTm -> Prop :=
|
||||||
|
(* Structural *)
|
||||||
|
| Su_Transitive Γ (A B C : PTm) :
|
||||||
|
Γ ⊢ A ≲ B ->
|
||||||
|
Γ ⊢ B ≲ C ->
|
||||||
|
Γ ⊢ A ≲ C
|
||||||
|
|
||||||
|
(* Congruence *)
|
||||||
|
| Su_Univ Γ i j :
|
||||||
|
⊢ Γ ->
|
||||||
|
i <= j ->
|
||||||
|
Γ ⊢ PUniv i ≲ PUniv j
|
||||||
|
|
||||||
|
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
|
||||||
|
Γ ⊢ A0 ∈ PUniv i ->
|
||||||
|
Γ ⊢ A1 ≲ A0 ->
|
||||||
|
(cons A0 Γ) ⊢ B0 ≲ B1 ->
|
||||||
|
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1
|
||||||
|
|
||||||
|
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
|
||||||
|
Γ ⊢ A1 ∈ PUniv i ->
|
||||||
|
Γ ⊢ A0 ≲ A1 ->
|
||||||
|
(cons A1 Γ) ⊢ B0 ≲ B1 ->
|
||||||
|
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1
|
||||||
|
|
||||||
|
(* Injecting from equalities *)
|
||||||
|
| Su_Eq Γ (A : PTm) B i :
|
||||||
|
Γ ⊢ A ≡ B ∈ PUniv i ->
|
||||||
|
Γ ⊢ A ≲ B
|
||||||
|
|
||||||
|
(* Projection axioms *)
|
||||||
|
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||||
|
Γ ⊢ A1 ≲ A0
|
||||||
|
|
||||||
|
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||||
|
Γ ⊢ A0 ≲ A1
|
||||||
|
|
||||||
|
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
|
||||||
|
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A1 ->
|
||||||
|
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
||||||
|
|
||||||
|
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
|
||||||
|
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||||
|
Γ ⊢ a0 ≡ a1 ∈ A0 ->
|
||||||
|
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
||||||
|
|
||||||
|
with Wff : list PTm -> Prop :=
|
||||||
|
| Wff_Nil :
|
||||||
|
⊢ nil
|
||||||
|
| Wff_Cons Γ (A : PTm) i :
|
||||||
|
⊢ Γ ->
|
||||||
|
Γ ⊢ A ∈ PUniv i ->
|
||||||
|
(* -------------------------------- *)
|
||||||
|
⊢ (cons A Γ)
|
||||||
|
|
||||||
|
where
|
||||||
|
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
|
||||||
|
|
||||||
|
Scheme wf_ind := Induction for Wff Sort Prop
|
||||||
|
with wt_ind := Induction for Wt Sort Prop
|
||||||
|
with eq_ind := Induction for Eq Sort Prop
|
||||||
|
with le_ind := Induction for LEq Sort Prop.
|
||||||
|
|
||||||
|
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
|
Loading…
Add table
Add a link
Reference in a new issue