Prove some impossible cases
This commit is contained in:
parent
3fb6d411e7
commit
0f48a485be
2 changed files with 49 additions and 12 deletions
|
@ -831,6 +831,12 @@ Lemma algo_metric_join n k (a b : PTm n) :
|
|||
rewrite /DJoin.R. exists v. sfirstorder use:@relations.rtc_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma T_Univ_Raise n Γ (a : PTm n) i j :
|
||||
Γ ⊢ a ∈ PUniv i ->
|
||||
i <= j ->
|
||||
Γ ⊢ a ∈ PUniv j.
|
||||
Proof. hauto lq:on rew:off use:T_Conv, Su_Univ, wff_mutual. Qed.
|
||||
|
||||
Lemma coqeq_complete n k (a b : PTm n) :
|
||||
algo_metric k a b ->
|
||||
(forall Γ A, Γ ⊢ a ∈ A -> Γ ⊢ b ∈ A -> a ⇔ b) /\
|
||||
|
@ -909,22 +915,24 @@ Proof.
|
|||
by hauto lq:on rew:off use:Su_Univ, wff_mutual solve+:lia.
|
||||
have ? : Γ ⊢ PUniv i1 ≲ PUniv (max i0 i1)
|
||||
by hauto lq:on rew:off use:Su_Univ, wff_mutual solve+:lia.
|
||||
have hA0' : Γ ⊢ A0 ∈ PUniv (max i0 i1) by eauto using T_Conv.
|
||||
have hA1' : Γ ⊢ A1 ∈ PUniv (max i0 i1) by eauto using T_Conv.
|
||||
have {}hA0 : Γ ⊢ A0 ∈ PUniv (max i0 i1) by eauto using T_Conv.
|
||||
have {}hA1 : Γ ⊢ A1 ∈ PUniv (max i0 i1) by eauto using T_Conv.
|
||||
have {}hB0 : funcomp (ren_PTm shift) (scons A0 Γ) ⊢
|
||||
B0 ∈ PUniv (max i0 i1)
|
||||
by hauto lq:on use:T_Univ_Raise solve+:lia.
|
||||
have {}hB1 : funcomp (ren_PTm shift) (scons A1 Γ) ⊢
|
||||
B1 ∈ PUniv (max i0 i1)
|
||||
by hauto lq:on use:T_Univ_Raise solve+:lia.
|
||||
|
||||
have ihA : A0 ⇔ A1 by hauto l:on.
|
||||
have hAE : Γ ⊢ A0 ≡ A1 ∈ PUniv (Nat.max i0 i1)
|
||||
by hauto l:on use:coqeq_sound_mutual.
|
||||
apply : CE_HRed; eauto using rtc_refl.
|
||||
constructor => //.
|
||||
admit.
|
||||
(* eapply ih; eauto. *)
|
||||
(* move /Su_Eq in hAE. *)
|
||||
(* apply : ctx_eq_subst_one; eauto. *)
|
||||
|
||||
(* Show that A0 and A1 are algorithmically equal *)
|
||||
(* Use soundness to show that they are actually definitionally equal *)
|
||||
(* Use that to show that B0 and B1 can be assigned the same type *)
|
||||
(* admit. *)
|
||||
eapply ih; eauto.
|
||||
apply : ctx_eq_subst_one; eauto.
|
||||
eauto using Su_Eq.
|
||||
* move => > /algo_metric_join.
|
||||
hauto lq:on use:DJoin.bind_univ_noconf.
|
||||
+ case : b => //=.
|
||||
|
@ -943,9 +951,12 @@ Proof.
|
|||
(* NeuPair *)
|
||||
+ admit.
|
||||
(* NeuBind: Impossible *)
|
||||
+ admit.
|
||||
+ move => b p p0 a /algo_metric_join h _ h0. exfalso.
|
||||
move : h h0. clear.
|
||||
move /Sub.FromJoin.
|
||||
hauto l:on use:Sub.hne_bind_noconf.
|
||||
(* NeuUniv: Impossible *)
|
||||
+ admit.
|
||||
+ hauto lq:on rew:off use:DJoin.hne_univ_noconf, algo_metric_join.
|
||||
- move {ih}.
|
||||
move /algo_metric_sym in h.
|
||||
qauto l:on use:coqeq_symmetric_mutual.
|
||||
|
|
|
@ -1675,6 +1675,10 @@ Module RERed.
|
|||
End RERed.
|
||||
|
||||
Module REReds.
|
||||
Lemma hne_preservation n (a b : PTm n) :
|
||||
rtc RERed.R a b -> ishne a -> ishne b.
|
||||
Proof. induction 1; eauto using RERed.hne_preservation, rtc_refl, rtc. Qed.
|
||||
|
||||
Lemma sn_preservation n (a b : PTm n) :
|
||||
rtc RERed.R a b ->
|
||||
SN a ->
|
||||
|
@ -2284,6 +2288,17 @@ Module DJoin.
|
|||
case : c => //=; itauto.
|
||||
Qed.
|
||||
|
||||
Lemma hne_univ_noconf n (a b : PTm n) :
|
||||
R a b -> ishne a -> isuniv b -> False.
|
||||
Proof.
|
||||
move => [c [h0 h1]] h2 h3.
|
||||
have {h0 h1 h2 h3} : ishne c /\ isuniv c by
|
||||
hauto l:on use:REReds.hne_preservation,
|
||||
REReds.univ_preservation.
|
||||
move => [].
|
||||
case : c => //=.
|
||||
Qed.
|
||||
|
||||
Lemma bind_inj n p0 p1 (A0 A1 : PTm n) B0 B1 :
|
||||
DJoin.R (PBind p0 A0 B0) (PBind p1 A1 B1) ->
|
||||
p0 = p1 /\ DJoin.R A0 A1 /\ DJoin.R B0 B1.
|
||||
|
@ -2564,6 +2579,17 @@ Module Sub.
|
|||
qauto l:on inv:SNe.
|
||||
Qed.
|
||||
|
||||
Lemma hne_bind_noconf n (a b : PTm n) :
|
||||
R a b -> ishne a -> isbind b -> False.
|
||||
Proof.
|
||||
rewrite /R.
|
||||
move => [c[d] [? []]] h0 h1 h2 h3.
|
||||
have : ishne c by eauto using REReds.hne_preservation.
|
||||
have : isbind d by eauto using REReds.bind_preservation.
|
||||
move : h1. clear. inversion 1; subst => //=.
|
||||
clear. case : d => //=.
|
||||
Qed.
|
||||
|
||||
Lemma bind_sne_noconf n (a b : PTm n) :
|
||||
R a b -> SNe b -> isbind a -> False.
|
||||
Proof.
|
||||
|
|
Loading…
Add table
Reference in a new issue