Finish soundness proof

This commit is contained in:
Yiyun Liu 2025-02-08 22:52:50 -05:00
parent 0c83044d72
commit 932662d5d9
2 changed files with 12 additions and 5 deletions

View file

@ -1120,7 +1120,7 @@ Proof.
qauto l:on use:SemWt_SemLEq, Sub.transitive.
Qed.
Lemma ST_Univ n Γ i j :
Lemma ST_Univ' n Γ i j :
i < j ->
Γ PUniv i : PTm n PUniv j.
Proof.
@ -1128,6 +1128,12 @@ Proof.
apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ.
Qed.
Lemma ST_Univ n Γ i :
Γ PUniv i : PTm n PUniv (S i).
Proof.
apply ST_Univ'. lia.
Qed.
Lemma SSu_Univ n Γ i j :
i <= j ->
Γ PUniv i : PTm n PUniv j.
@ -1227,4 +1233,4 @@ Qed.
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SemWff_nil SemWff_cons : sem.
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ : sem.

View file

@ -5,7 +5,8 @@ From Hammer Require Import Tactics.
Theorem fundamental_theorem :
(forall n (Γ : fin n -> PTm n), Γ -> Γ) /\
(forall n Γ (a A : PTm n), Γ a A -> Γ a A) /\
(forall n Γ (a b A : PTm n), Γ a b A -> Γ a b A).
apply wt_mutual; eauto with sem;[idtac].
hauto l:on use:SE_Pair.
(forall n Γ (a b A : PTm n), Γ a b A -> Γ a b A) /\
(forall n Γ (a b : PTm n), Γ a b -> Γ a b).
apply wt_mutual; eauto with sem; [hauto l:on use:SE_Pair].
Unshelve. all : exact 0.
Qed.