Add Coquand's algorithm

This commit is contained in:
Yiyun Liu 2025-02-10 18:40:42 -05:00
parent 8105b5c410
commit bccf6eb860
4 changed files with 169 additions and 35 deletions

View file

@ -48,3 +48,22 @@ Proof.
move : E_Bind h0 h1; repeat move/[apply].
firstorder.
Qed.
Lemma E_App n Γ (b0 b1 a0 a1 : PTm n) A B :
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PPi A B PUniv i by hauto l:on use:regularity.
move : E_App h. by repeat move/[apply].
Qed.
Lemma E_Proj2 n Γ (a b : PTm n) A B :
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity.
move : E_Proj2 h; by repeat move/[apply].
Qed.

105
theories/algorithmic.v Normal file
View file

@ -0,0 +1,105 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing.
From Hammer Require Import Tactics.
Require Import ssreflect ssrbool.
Require Import Psatz.
From stdpp Require Import relations (rtc(..)).
Require Import Coq.Logic.FunctionalExtensionality.
Module HRed.
Inductive R {n} : PTm n -> PTm n -> Prop :=
(****************** Beta ***********************)
| AppAbs a b :
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
| ProjPair p a b :
R (PProj p (PPair a b)) (if p is PL then a else b)
(*************** Congruence ********************)
| AppCong a0 a1 b :
R a0 a1 ->
R (PApp a0 b) (PApp a1 b)
| ProjCong p a0 a1 :
R a0 a1 ->
R (PProj p a0) (PProj p a1).
End HRed.
(* Coquand's algorithm with subtyping *)
Reserved Notation "a ⇔ b" (at level 70).
Reserved Notation "a ↔ b" (at level 70).
Reserved Notation "a ≪ b" (at level 70).
Reserved Notation "a ⋖ b" (at level 70).
Inductive CoqEq {n} : PTm n -> PTm n -> Prop :=
| CE_AbsAbs a b :
a b ->
(* --------------------- *)
PAbs a PAbs b
| CE_AbsNeu a u :
ishne u ->
a PApp (ren_PTm shift u) (VarPTm var_zero) ->
(* --------------------- *)
PAbs a u
| CE_NeuAbs a u :
ishne u ->
PApp (ren_PTm shift u) (VarPTm var_zero) a ->
(* --------------------- *)
u PAbs a
| CE_PairPair a0 a1 b0 b1 :
a0 a1 ->
b0 b1 ->
(* ---------------------------- *)
PPair a0 b0 PPair a1 b1
| CE_PairNeu a0 a1 u :
ishne u ->
a0 PProj PL u ->
a1 PProj PR u ->
(* ----------------------- *)
PPair a0 a1 u
| CE_NeuPair a0 a1 u :
ishne u ->
PProj PL u a0 ->
PProj PR u a1 ->
(* ----------------------- *)
u PPair a0 a1
| CE_ProjCong p u0 u1 :
ishne u0 ->
ishne u1 ->
u0 u1 ->
(* --------------------- *)
PProj p u0 PProj p u1
| CE_AppCong u0 u1 a0 a1 :
ishne u0 ->
ishne u1 ->
u0 u1 ->
a0 a1 ->
(* ------------------------- *)
PApp u0 a0 PApp u1 a1
| CE_VarCong i :
(* -------------------------- *)
VarPTm i VarPTm i
| CE_UnivCong i :
(* -------------------------- *)
PUniv i PUniv i
| CE_BindCong p A0 A1 B0 B1 :
A0 A1 ->
B0 B1 ->
(* ---------------------------- *)
PBind p A0 B0 PBind p A1 B1
with CoqEq_R {n} : PTm n -> PTm n -> Prop :=
| CE_HRed a a' b b' :
rtc HRed.R a a' ->
rtc HRed.R b b' ->
a' b' ->
(* ----------------------- *)
a b
where "a ⇔ b" := (CoqEq a b) and "a ↔ b" := (CoqEq_R a b).

View file

@ -45,3 +45,48 @@ Proof.
sauto.
congruence.
Qed.
Definition ishf {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| PAbs _ => true
| PUniv _ => true
| PBind _ _ _ => true
| _ => false
end.
Fixpoint ishne {n} (a : PTm n) :=
match a with
| VarPTm _ => true
| PApp a _ => ishne a
| PProj _ a => ishne a
| _ => false
end.
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
Definition ispair {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| _ => false
end.
Definition isabs {n} (a : PTm n) :=
match a with
| PAbs _ => true
| _ => false
end.
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ishf (ren_PTm ξ a) = ishf a.
Proof. case : a => //=. Qed.
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
isabs (ren_PTm ξ a) = isabs a.
Proof. case : a => //=. Qed.
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ispair (ren_PTm ξ a) = ispair a.
Proof. case : a => //=. Qed.

View file

@ -166,41 +166,6 @@ with TRedSN {n} : PTm n -> PTm n -> Prop :=
Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop.
Definition ishf {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| PAbs _ => true
| PUniv _ => true
| PBind _ _ _ => true
| _ => false
end.
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
Definition ispair {n} (a : PTm n) :=
match a with
| PPair _ _ => true
| _ => false
end.
Definition isabs {n} (a : PTm n) :=
match a with
| PAbs _ => true
| _ => false
end.
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ishf (ren_PTm ξ a) = ishf a.
Proof. case : a => //=. Qed.
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
isabs (ren_PTm ξ a) = isabs a.
Proof. case : a => //=. Qed.
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
ispair (ren_PTm ξ a) = ispair a.
Proof. case : a => //=. Qed.
Lemma PProj_imp n p a :
@ishf n a ->