Reformulate renaming
This commit is contained in:
parent
932662d5d9
commit
4396786701
2 changed files with 8 additions and 10 deletions
|
@ -3,17 +3,11 @@ From Hammer Require Import Tactics.
|
|||
Require Import ssreflect.
|
||||
|
||||
|
||||
Lemma lem :
|
||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ) /\
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...).
|
||||
Proof. apply wt_mutual. ...
|
||||
|
||||
|
||||
Lemma wff_mutual :
|
||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ⊢ Γ) /\
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ⊢ Γ).
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ⊢ Γ) /\
|
||||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ⊢ Γ).
|
||||
Proof. apply wt_mutual; eauto. Qed.
|
||||
|
||||
#[export]Hint Constructors Wt Wff Eq : wt.
|
||||
|
@ -35,7 +29,9 @@ Lemma renaming :
|
|||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
Δ ⊢ ren_PTm ξ a ∈ ren_PTm ξ A) /\
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
Δ ⊢ ren_PTm ξ a ≡ ren_PTm ξ b ∈ ren_PTm ξ A).
|
||||
Δ ⊢ ren_PTm ξ a ≡ ren_PTm ξ b ∈ ren_PTm ξ A) /\
|
||||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
Δ ⊢ ren_PTm ξ A ≲ ren_PTm ξ B).
|
||||
Proof.
|
||||
apply wt_mutual => //=; eauto 3 with wt.
|
||||
- move => n Γ i hΓ _ m Δ ξ hΔ hξ.
|
||||
|
|
|
@ -105,6 +105,7 @@ with LEq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
|
|||
Γ ⊢ A ≲ C
|
||||
|
||||
| Su_Univ n Γ i j :
|
||||
⊢ Γ ->
|
||||
i <= j ->
|
||||
Γ ⊢ PUniv i : PTm n ≲ PUniv j
|
||||
|
||||
|
@ -164,5 +165,6 @@ Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
|
|||
(* Lemma lem : *)
|
||||
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
|
||||
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
|
||||
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...). *)
|
||||
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
|
||||
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
|
||||
(* Proof. apply wt_mutual. ... *)
|
||||
|
|
Loading…
Add table
Reference in a new issue