Finish injectivity for pairs
This commit is contained in:
parent
06d420aa7e
commit
60a4eb886f
2 changed files with 112 additions and 20 deletions
|
@ -771,12 +771,56 @@ Proof.
|
|||
lia.
|
||||
Qed.
|
||||
|
||||
Lemma lored_nsteps_pair_inv k n (a0 b0 C : PTm n) :
|
||||
nsteps LoRed.R k (PPair a0 b0) C ->
|
||||
exists i j a1 b1,
|
||||
i <= k /\ j <= k /\
|
||||
C = PPair a1 b1 /\
|
||||
nsteps LoRed.R i a0 a1 /\
|
||||
nsteps LoRed.R j b0 b1.
|
||||
move E : (PPair a0 b0) => u hu. move : a0 b0 E.
|
||||
elim : k u C / hu.
|
||||
- sauto lq:on.
|
||||
- move => k a0 a1 a2 ha01 ha12 ih a3 b0 ?. subst.
|
||||
inversion ha01; subst => //=.
|
||||
spec_refl.
|
||||
move : ih => [i][j][a1][b1][?][?][?][h0]h1.
|
||||
subst. exists (S i),j,a1,b1. sauto lq:on solve+:lia.
|
||||
spec_refl.
|
||||
move : ih => [i][j][a1][b1][?][?][?][h0]h1. subst.
|
||||
exists i, (S j), a1, b1. sauto lq:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma algo_metric_join n k (a b : PTm n) :
|
||||
algo_metric k a b ->
|
||||
DJoin.R a b.
|
||||
rewrite /algo_metric.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3][[v [h40 h41]]]h5.
|
||||
have {}h0 : rtc LoRed.R a va by hauto lq:on use:@relations.rtc_nsteps.
|
||||
have {}h1 : rtc LoRed.R b vb by hauto lq:on use:@relations.rtc_nsteps.
|
||||
apply REReds.FromEReds in h40,h41.
|
||||
apply LoReds.ToRReds in h0,h1.
|
||||
apply REReds.FromRReds in h0,h1.
|
||||
rewrite /DJoin.R. exists v. sfirstorder use:@relations.rtc_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma algo_metric_pair n k (a0 b0 a1 b1 : PTm n) :
|
||||
SN (PPair a0 b0) ->
|
||||
SN (PPair a1 b1) ->
|
||||
algo_metric k (PPair a0 b0) (PPair a1 b1) ->
|
||||
exists j, j < k /\ algo_metric j a0 a1 /\ algo_metric j b0 b1.
|
||||
Admitted.
|
||||
move => sn0 sn1 /[dup] /algo_metric_join hj.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3][h4]h5.
|
||||
move : lored_nsteps_pair_inv h0;repeat move/[apply].
|
||||
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
|
||||
move : lored_nsteps_pair_inv h1;repeat move/[apply].
|
||||
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
move /andP : h2 => [h20 h21].
|
||||
move /andP : h3 => [h30 h31].
|
||||
suff : EJoin.R a2 a3 /\ EJoin.R b2 b3 by hauto lq:on solve+:lia.
|
||||
hauto l:on use:DJoin.ejoin_pair_inj.
|
||||
Qed.
|
||||
|
||||
Lemma algo_metric_neu_abs n k (a0 : PTm (S n)) u :
|
||||
algo_metric k u (PAbs a0) ->
|
||||
|
@ -836,19 +880,6 @@ Proof.
|
|||
- exists i1,j1,b2,b3. sfirstorder b:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma algo_metric_join n k (a b : PTm n) :
|
||||
algo_metric k a b ->
|
||||
DJoin.R a b.
|
||||
rewrite /algo_metric.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3][[v [h40 h41]]]h5.
|
||||
have {}h0 : rtc LoRed.R a va by hauto lq:on use:@relations.rtc_nsteps.
|
||||
have {}h1 : rtc LoRed.R b vb by hauto lq:on use:@relations.rtc_nsteps.
|
||||
apply REReds.FromEReds in h40,h41.
|
||||
apply LoReds.ToRReds in h0,h1.
|
||||
apply REReds.FromRReds in h0,h1.
|
||||
rewrite /DJoin.R. exists v. sfirstorder use:@relations.rtc_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma T_Univ_Raise n Γ (a : PTm n) i j :
|
||||
Γ ⊢ a ∈ PUniv i ->
|
||||
i <= j ->
|
||||
|
|
|
@ -262,6 +262,12 @@ end.
|
|||
Lemma ne_nf n a : @ne n a -> nf a.
|
||||
Proof. elim : a => //=. Qed.
|
||||
|
||||
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
|
||||
Proof.
|
||||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||||
Qed.
|
||||
|
||||
Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop :=
|
||||
| T_Refl :
|
||||
TRedSN' a a
|
||||
|
@ -842,12 +848,6 @@ Module RReds.
|
|||
End RReds.
|
||||
|
||||
|
||||
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
|
||||
Proof.
|
||||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||||
Qed.
|
||||
|
||||
Module NeEPar.
|
||||
Inductive R_nonelim {n} : PTm n -> PTm n -> Prop :=
|
||||
(****************** Eta ***********************)
|
||||
|
@ -1446,6 +1446,14 @@ Module ERed.
|
|||
all : hauto lq:on ctrs:R.
|
||||
Qed.
|
||||
|
||||
Lemma nf_preservation n (a b : PTm n) :
|
||||
ERed.R a b -> (nf a -> nf b) /\ (ne a -> ne b).
|
||||
Proof.
|
||||
move => h.
|
||||
elim : n a b /h => //=;
|
||||
hauto lqb:on use:ne_nf_ren,ne_nf.
|
||||
Qed.
|
||||
|
||||
End ERed.
|
||||
|
||||
Module EReds.
|
||||
|
@ -1829,6 +1837,14 @@ Module REReds.
|
|||
hauto l:on use:substing.
|
||||
Qed.
|
||||
|
||||
Lemma ToEReds n (a b : PTm n) :
|
||||
nf a ->
|
||||
rtc RERed.R a b -> rtc ERed.R a b.
|
||||
Proof.
|
||||
move => + h.
|
||||
induction h; hauto lq:on rew:off ctrs:rtc use:RERed.ToBetaEta, RReds.nf_refl, @rtc_once, ERed.nf_preservation.
|
||||
Qed.
|
||||
|
||||
End REReds.
|
||||
|
||||
Module LoRed.
|
||||
|
@ -2215,6 +2231,12 @@ Module DJoin.
|
|||
Lemma refl n (a : PTm n) : R a a.
|
||||
Proof. sfirstorder use:@rtc_refl unfold:R. Qed.
|
||||
|
||||
Lemma FromEJoin n (a b : PTm n) : EJoin.R a b -> DJoin.R a b.
|
||||
Proof. hauto q:on use:REReds.FromEReds. Qed.
|
||||
|
||||
Lemma ToEJoin n (a b : PTm n) : nf a -> nf b -> DJoin.R a b -> EJoin.R a b.
|
||||
Proof. hauto q:on use:REReds.ToEReds. Qed.
|
||||
|
||||
Lemma symmetric n (a b : PTm n) : R a b -> R b a.
|
||||
Proof. sfirstorder unfold:R. Qed.
|
||||
|
||||
|
@ -2381,6 +2403,45 @@ Module DJoin.
|
|||
hauto q:on ctrs:rtc inv:option use:REReds.cong.
|
||||
Qed.
|
||||
|
||||
Lemma pair_inj n (a0 a1 b0 b1 : PTm n) :
|
||||
SN (PPair a0 b0) ->
|
||||
SN (PPair a1 b1) ->
|
||||
R (PPair a0 b0) (PPair a1 b1) ->
|
||||
R a0 a1 /\ R b0 b1.
|
||||
Proof.
|
||||
move => sn0 sn1.
|
||||
have [? [? [? ?]]] : SN a0 /\ SN b0 /\ SN a1 /\ SN b1 by sfirstorder use:SN_NoForbid.P_PairInv.
|
||||
have ? : SN (PProj PL (PPair a0 b0)) by hauto lq:on db:sn.
|
||||
have ? : SN (PProj PR (PPair a0 b0)) by hauto lq:on db:sn.
|
||||
have ? : SN (PProj PL (PPair a1 b1)) by hauto lq:on db:sn.
|
||||
have ? : SN (PProj PR (PPair a1 b1)) by hauto lq:on db:sn.
|
||||
have h0L : RRed.R (PProj PL (PPair a0 b0)) a0 by eauto with red.
|
||||
have h0R : RRed.R (PProj PR (PPair a0 b0)) b0 by eauto with red.
|
||||
have h1L : RRed.R (PProj PL (PPair a1 b1)) a1 by eauto with red.
|
||||
have h1R : RRed.R (PProj PR (PPair a1 b1)) b1 by eauto with red.
|
||||
move => h2.
|
||||
move /ProjCong in h2.
|
||||
have h2L := h2 PL.
|
||||
have {h2}h2R := h2 PR.
|
||||
move /FromRRed1 in h0L.
|
||||
move /FromRRed0 in h1L.
|
||||
move /FromRRed1 in h0R.
|
||||
move /FromRRed0 in h1R.
|
||||
split; eauto using transitive.
|
||||
Qed.
|
||||
|
||||
Lemma ejoin_pair_inj n (a0 a1 b0 b1 : PTm n) :
|
||||
nf a0 -> nf b0 -> nf a1 -> nf b1 ->
|
||||
EJoin.R (PPair a0 b0) (PPair a1 b1) ->
|
||||
EJoin.R a0 a1 /\ EJoin.R b0 b1.
|
||||
Proof.
|
||||
move => h0 h1 h2 h3 /FromEJoin.
|
||||
have [? ?] : SN (PPair a0 b0) /\ SN (PPair a1 b1) by sauto lqb:on rew:off use:ne_nf_embed.
|
||||
move => ?.
|
||||
have : R a0 a1 /\ R b0 b1 by hauto l:on use:pair_inj.
|
||||
hauto l:on use:ToEJoin.
|
||||
Qed.
|
||||
|
||||
Lemma abs_inj n (a0 a1 : PTm (S n)) :
|
||||
SN a0 -> SN a1 ->
|
||||
R (PAbs a0) (PAbs a1) ->
|
||||
|
|
Loading…
Add table
Reference in a new issue