Finish injectivity for pairs

This commit is contained in:
Yiyun Liu 2025-02-16 19:14:54 -05:00
parent 06d420aa7e
commit 60a4eb886f
2 changed files with 112 additions and 20 deletions

View file

@ -771,12 +771,56 @@ Proof.
lia.
Qed.
Lemma lored_nsteps_pair_inv k n (a0 b0 C : PTm n) :
nsteps LoRed.R k (PPair a0 b0) C ->
exists i j a1 b1,
i <= k /\ j <= k /\
C = PPair a1 b1 /\
nsteps LoRed.R i a0 a1 /\
nsteps LoRed.R j b0 b1.
move E : (PPair a0 b0) => u hu. move : a0 b0 E.
elim : k u C / hu.
- sauto lq:on.
- move => k a0 a1 a2 ha01 ha12 ih a3 b0 ?. subst.
inversion ha01; subst => //=.
spec_refl.
move : ih => [i][j][a1][b1][?][?][?][h0]h1.
subst. exists (S i),j,a1,b1. sauto lq:on solve+:lia.
spec_refl.
move : ih => [i][j][a1][b1][?][?][?][h0]h1. subst.
exists i, (S j), a1, b1. sauto lq:on solve+:lia.
Qed.
Lemma algo_metric_join n k (a b : PTm n) :
algo_metric k a b ->
DJoin.R a b.
rewrite /algo_metric.
move => [i][j][va][vb][h0][h1][h2][h3][[v [h40 h41]]]h5.
have {}h0 : rtc LoRed.R a va by hauto lq:on use:@relations.rtc_nsteps.
have {}h1 : rtc LoRed.R b vb by hauto lq:on use:@relations.rtc_nsteps.
apply REReds.FromEReds in h40,h41.
apply LoReds.ToRReds in h0,h1.
apply REReds.FromRReds in h0,h1.
rewrite /DJoin.R. exists v. sfirstorder use:@relations.rtc_transitive.
Qed.
Lemma algo_metric_pair n k (a0 b0 a1 b1 : PTm n) :
SN (PPair a0 b0) ->
SN (PPair a1 b1) ->
algo_metric k (PPair a0 b0) (PPair a1 b1) ->
exists j, j < k /\ algo_metric j a0 a1 /\ algo_metric j b0 b1.
Admitted.
move => sn0 sn1 /[dup] /algo_metric_join hj.
move => [i][j][va][vb][h0][h1][h2][h3][h4]h5.
move : lored_nsteps_pair_inv h0;repeat move/[apply].
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
move : lored_nsteps_pair_inv h1;repeat move/[apply].
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
simpl in *. exists (k - 1).
move /andP : h2 => [h20 h21].
move /andP : h3 => [h30 h31].
suff : EJoin.R a2 a3 /\ EJoin.R b2 b3 by hauto lq:on solve+:lia.
hauto l:on use:DJoin.ejoin_pair_inj.
Qed.
Lemma algo_metric_neu_abs n k (a0 : PTm (S n)) u :
algo_metric k u (PAbs a0) ->
@ -836,19 +880,6 @@ Proof.
- exists i1,j1,b2,b3. sfirstorder b:on solve+:lia.
Qed.
Lemma algo_metric_join n k (a b : PTm n) :
algo_metric k a b ->
DJoin.R a b.
rewrite /algo_metric.
move => [i][j][va][vb][h0][h1][h2][h3][[v [h40 h41]]]h5.
have {}h0 : rtc LoRed.R a va by hauto lq:on use:@relations.rtc_nsteps.
have {}h1 : rtc LoRed.R b vb by hauto lq:on use:@relations.rtc_nsteps.
apply REReds.FromEReds in h40,h41.
apply LoReds.ToRReds in h0,h1.
apply REReds.FromRReds in h0,h1.
rewrite /DJoin.R. exists v. sfirstorder use:@relations.rtc_transitive.
Qed.
Lemma T_Univ_Raise n Γ (a : PTm n) i j :
Γ a PUniv i ->
i <= j ->

View file

@ -262,6 +262,12 @@ end.
Lemma ne_nf n a : @ne n a -> nf a.
Proof. elim : a => //=. Qed.
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
Proof.
move : m ξ. elim : n / a => //=; solve [hauto b:on].
Qed.
Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop :=
| T_Refl :
TRedSN' a a
@ -842,12 +848,6 @@ Module RReds.
End RReds.
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
Proof.
move : m ξ. elim : n / a => //=; solve [hauto b:on].
Qed.
Module NeEPar.
Inductive R_nonelim {n} : PTm n -> PTm n -> Prop :=
(****************** Eta ***********************)
@ -1446,6 +1446,14 @@ Module ERed.
all : hauto lq:on ctrs:R.
Qed.
Lemma nf_preservation n (a b : PTm n) :
ERed.R a b -> (nf a -> nf b) /\ (ne a -> ne b).
Proof.
move => h.
elim : n a b /h => //=;
hauto lqb:on use:ne_nf_ren,ne_nf.
Qed.
End ERed.
Module EReds.
@ -1829,6 +1837,14 @@ Module REReds.
hauto l:on use:substing.
Qed.
Lemma ToEReds n (a b : PTm n) :
nf a ->
rtc RERed.R a b -> rtc ERed.R a b.
Proof.
move => + h.
induction h; hauto lq:on rew:off ctrs:rtc use:RERed.ToBetaEta, RReds.nf_refl, @rtc_once, ERed.nf_preservation.
Qed.
End REReds.
Module LoRed.
@ -2215,6 +2231,12 @@ Module DJoin.
Lemma refl n (a : PTm n) : R a a.
Proof. sfirstorder use:@rtc_refl unfold:R. Qed.
Lemma FromEJoin n (a b : PTm n) : EJoin.R a b -> DJoin.R a b.
Proof. hauto q:on use:REReds.FromEReds. Qed.
Lemma ToEJoin n (a b : PTm n) : nf a -> nf b -> DJoin.R a b -> EJoin.R a b.
Proof. hauto q:on use:REReds.ToEReds. Qed.
Lemma symmetric n (a b : PTm n) : R a b -> R b a.
Proof. sfirstorder unfold:R. Qed.
@ -2381,6 +2403,45 @@ Module DJoin.
hauto q:on ctrs:rtc inv:option use:REReds.cong.
Qed.
Lemma pair_inj n (a0 a1 b0 b1 : PTm n) :
SN (PPair a0 b0) ->
SN (PPair a1 b1) ->
R (PPair a0 b0) (PPair a1 b1) ->
R a0 a1 /\ R b0 b1.
Proof.
move => sn0 sn1.
have [? [? [? ?]]] : SN a0 /\ SN b0 /\ SN a1 /\ SN b1 by sfirstorder use:SN_NoForbid.P_PairInv.
have ? : SN (PProj PL (PPair a0 b0)) by hauto lq:on db:sn.
have ? : SN (PProj PR (PPair a0 b0)) by hauto lq:on db:sn.
have ? : SN (PProj PL (PPair a1 b1)) by hauto lq:on db:sn.
have ? : SN (PProj PR (PPair a1 b1)) by hauto lq:on db:sn.
have h0L : RRed.R (PProj PL (PPair a0 b0)) a0 by eauto with red.
have h0R : RRed.R (PProj PR (PPair a0 b0)) b0 by eauto with red.
have h1L : RRed.R (PProj PL (PPair a1 b1)) a1 by eauto with red.
have h1R : RRed.R (PProj PR (PPair a1 b1)) b1 by eauto with red.
move => h2.
move /ProjCong in h2.
have h2L := h2 PL.
have {h2}h2R := h2 PR.
move /FromRRed1 in h0L.
move /FromRRed0 in h1L.
move /FromRRed1 in h0R.
move /FromRRed0 in h1R.
split; eauto using transitive.
Qed.
Lemma ejoin_pair_inj n (a0 a1 b0 b1 : PTm n) :
nf a0 -> nf b0 -> nf a1 -> nf b1 ->
EJoin.R (PPair a0 b0) (PPair a1 b1) ->
EJoin.R a0 a1 /\ EJoin.R b0 b1.
Proof.
move => h0 h1 h2 h3 /FromEJoin.
have [? ?] : SN (PPair a0 b0) /\ SN (PPair a1 b1) by sauto lqb:on rew:off use:ne_nf_embed.
move => ?.
have : R a0 a1 /\ R b0 b1 by hauto l:on use:pair_inj.
hauto l:on use:ToEJoin.
Qed.
Lemma abs_inj n (a0 a1 : PTm (S n)) :
SN a0 -> SN a1 ->
R (PAbs a0) (PAbs a1) ->