Finish the pair pair case

This commit is contained in:
Yiyun Liu 2025-02-15 16:39:05 -05:00
parent 9d951a24c5
commit 926c2284a5
2 changed files with 150 additions and 11 deletions

View file

@ -709,6 +709,47 @@ Proof.
exists i, (S j), a1, b1. sauto lq:on solve+:lia.
Qed.
Lemma lored_nsteps_proj_inv k n p (a0 C : PTm n) :
nsteps LoRed.R k (PProj p a0) C ->
ishne a0 ->
exists i a1,
i <= k /\
C = PProj p a1 /\
nsteps LoRed.R i a0 a1.
Proof.
move E : (PProj p a0) => u hu. move : a0 E.
elim : k u C / hu.
- sauto lq:on.
- move => k a0 a1 a2 ha01 ha12 ih a3 ?. subst.
inversion ha01; subst => //=.
spec_refl.
move => h.
have : ishne a4 by sfirstorder use:lored_hne_preservation.
move : ih => /[apply]. move => [i][a1][?][?]h0. subst.
exists (S i), a1. hauto lq:on ctrs:nsteps solve+:lia.
Qed.
Lemma algo_metric_proj n k p0 p1 (a0 a1 : PTm n) :
algo_metric k (PProj p0 a0) (PProj p1 a1) ->
ishne a0 ->
ishne a1 ->
p0 = p1 /\ exists j, j < k /\ algo_metric j a0 a1.
Proof.
move => [i][j][va][vb][h0][h1][h2][h3][h4]h5 hne0 hne1.
move : lored_nsteps_proj_inv h0 (hne0);repeat move/[apply].
move => [i0][a2][hi][?]ha02. subst.
move : lored_nsteps_proj_inv h1 (hne1);repeat move/[apply].
move => [i1][a3][hj][?]ha13. subst.
simpl in *.
move /EJoin.hne_proj_inj : h4 => [h40 h41]. subst.
split => //.
exists (k - 1). split. simpl in *; lia.
rewrite/algo_metric.
do 4 eexists. repeat split; eauto. sfirstorder use:ne_nf.
sfirstorder use:ne_nf.
lia.
Qed.
Lemma algo_metric_app n k (a0 b0 a1 b1 : PTm n) :
algo_metric k (PApp a0 b0) (PApp a1 b1) ->
ishne a0 ->
@ -754,7 +795,7 @@ Qed.
Lemma coqeq_complete n k (a b : PTm n) :
algo_metric k a b ->
(forall Γ A, Γ a A -> Γ b A -> a b) /\
(forall Γ A B, ishne a -> ishne b -> Γ a A -> Γ b B -> a b /\ exists C, Γ C A /\ Γ C B).
(forall Γ A B, ishne a -> ishne b -> Γ a A -> Γ b B -> a b /\ exists C, Γ C A /\ Γ C B /\ Γ a C /\ Γ b C).
Proof.
move : k n a b.
elim /Wf_nat.lt_wf_ind.
@ -786,7 +827,7 @@ Proof.
suff [l [h0 h1]] : exists l, l < n /\ algo_metric l a1 a0 by eapply ih; eauto.
have ? : n > 0 by sauto solve+:lia.
exists (n - 1). split; first by lia.
move : ha0. rewrite /algo_metric.
move : (ha0). rewrite /algo_metric.
move => [i][j][va][vb][hr0][hr1][nfva][nfvb][[v [hr0' hr1']]] har.
apply lored_nsteps_abs_inv in hr0, hr1.
move : hr0 => [va' [hr00 hr01]].
@ -795,7 +836,19 @@ Proof.
suff [v0 [hv00 hv01]] : exists v0, rtc ERed.R va' v0 /\ rtc ERed.R vb' v0.
repeat split =>//=. sfirstorder.
simpl in *; by lia.
admit.
move /algo_metric_join /DJoin.symmetric : ha0.
have : SN a0 /\ SN a1 by qauto l:on use:fundamental_theorem, logrel.SemWt_SN.
move => /[dup] [[ha00 ha10]] [].
move : DJoin.abs_inj; repeat move/[apply].
move : DJoin.standardization ha00 ha10; repeat move/[apply].
move => [vb][va][h' [h'' [h''' [h'''' h'''''']]]].
have /LoReds.ToRReds {}hr00 : rtc LoRed.R a1 va'
by hauto lq:on use:@relations.rtc_nsteps.
have /LoReds.ToRReds {}hr10 : rtc LoRed.R a0 vb'
by hauto lq:on use:@relations.rtc_nsteps.
simpl in *.
have [*] : va' = va /\ vb' = vb by eauto using red_uniquenf. subst.
sfirstorder.
+ case : b => //=; try qauto depth:1 use:T_AbsPair_Imp, T_PairBind_Imp, T_PairUniv_Imp.
move => a1 b1 a0 b0 h _ _ Γ A hu0 hu1.
apply : CE_HRed; eauto using rtc_refl.
@ -804,17 +857,34 @@ Proof.
(* move => [l [hl [hal0 hal1]]]. *)
(* apply CE_PairPair. eapply ih; eauto. *)
(* by eapply ih; eauto. *)
+ admit.
+ admit.
+ case : b => //=.
* hauto lq:on use:T_AbsBind_Imp.
* hauto lq:on rew:off use:T_PairBind_Imp.
* move => p1 A1 B1 p0 A0 B0.
(* Show that A0 and A1 are algorithmically equal *)
(* Use soundness to show that they are actually definitionally equal *)
(* Use that to show that B0 and B1 can be assigned the same type *)
admit.
* move => > /algo_metric_join.
hauto lq:on use:DJoin.bind_univ_noconf.
+ case : b => //=.
* hauto lq:on use:T_AbsUniv_Imp.
* hauto lq:on use:T_PairUniv_Imp.
* qauto l:on use:algo_metric_join, DJoin.bind_univ_noconf, DJoin.symmetric.
* move => i j /algo_metric_join /DJoin.univ_inj ? _ _ Γ A hi hj.
subst.
hauto l:on.
- move : k a b h fb fa. abstract : hnfneu.
admit.
move => k.
move => + b.
case : b => //=; admit.
- move {ih}.
move /algo_metric_sym in h.
qauto l:on use:coqeq_symmetric_mutual.
- move {hnfneu}.
(* Clear out some trivial cases *)
suff : (forall (Γ : fin k -> PTm k) (A B : PTm k), Γ a A -> Γ b B -> a b /\ (exists C : PTm k, Γ C A /\ Γ C B)).
suff : (forall (Γ : fin k -> PTm k) (A B : PTm k), Γ a A -> Γ b B -> a b /\ (exists C : PTm k, Γ C A /\ Γ C B /\ Γ a C /\ Γ b C)).
move => h0.
split. move => *. apply : CE_HRed; eauto using rtc_refl. apply CE_NeuNeu. by firstorder.
by firstorder.
@ -825,7 +895,7 @@ Proof.
* have ? : j = i by hauto lq:on use:algo_metric_join, DJoin.var_inj. subst.
move => Γ A B hA hB.
split. apply CE_VarCong.
exists (Γ i). hauto l:on use:Var_Inv.
exists (Γ i). hauto l:on use:Var_Inv, T_Var.
* move => p p0 f /algo_metric_join. clear => ? ? _. exfalso.
hauto l:on use:REReds.var_inv, REReds.hne_app_inv.
* move => a0 a1 i /algo_metric_join. clear => ? ? _. exfalso.
@ -844,7 +914,7 @@ Proof.
move /(_ hj).
move => [_ ihb].
move : ihb (hne0) (hne1) hb0 hb1. repeat move/[apply].
move => [hb01][C][hT0]hT1.
move => [hb01][C][hT0][hT1][hT2]hT3.
move /Sub_Bind_InvL : (hT0).
move => [i][A2][B2]hE.
have hSu20 : Γ PBind PPi A2 B2 PBind PPi A0 B0 by
@ -865,11 +935,21 @@ Proof.
apply : Su_Transitive; eauto.
move /E_Refl in ha0.
hauto l:on use:Su_Pi_Proj2.
move => [:hsub].
have h01 : Γ a0 a1 A2 by sfirstorder use:coqeq_sound_mutual.
split.
apply Su_Transitive with (B := subst_PTm (scons a1 VarPTm) B2).
move /regularity_sub0 : hSu10 => [i0].
have : Γ a0 a1 A2 by sfirstorder use:coqeq_sound_mutual.
hauto l:on use:bind_inst.
hauto lq:on rew:off use:Su_Pi_Proj2, Su_Transitive, E_Refl.
split.
by apply : T_App; eauto using T_Conv_E.
apply : T_Conv; eauto.
apply T_App with (A := A2) (B := B2); eauto.
apply : T_Conv_E; eauto.
move /E_Symmetric in h01.
move /regularity_sub0 : hSu20 => [i0].
sfirstorder use:bind_inst.
* move => p p0 p1 p2 /algo_metric_join. clear => ? ? ?. exfalso.
hauto q:on use:REReds.hne_app_inv, REReds.hne_proj_inv.
* sfirstorder use:T_Bot_Imp.
@ -879,7 +959,59 @@ Proof.
* move => > /algo_metric_join. clear => ? ? ?. exfalso.
hauto l:on use:REReds.hne_proj_inv, REReds.hne_app_inv.
(* real case *)
* admit.
* move => p1 a1 p0 a0 /algo_metric_proj ha hne1 hne0.
move : ha (hne0) (hne1); repeat move/[apply].
move => [? [j []]]. subst.
move : ih; repeat move/[apply].
move => [_ ih].
case : p1.
** move => Γ A B ha0 ha1.
move /Proj1_Inv : ha0. move => [A0][B0][ha0]hSu0.
move /Proj1_Inv : ha1. move => [A1][B1][ha1]hSu1.
move : ih ha0 ha1 (hne0) (hne1); repeat move/[apply].
move => [ha [C [hS0 [hS1 [wta0 wta1]]]]].
split. sauto lq:on.
move /Sub_Bind_InvL : (hS0) => [i][A2][B2]hS2.
have hSu20 : Γ PBind PSig A2 B2 PBind PSig A0 B0
by eauto using Su_Transitive, Su_Eq.
have hSu21 : Γ PBind PSig A2 B2 PBind PSig A1 B1
by eauto using Su_Transitive, Su_Eq.
exists A2. split; eauto using Su_Sig_Proj1, Su_Transitive.
repeat split => //=.
hauto l:on use:Su_Sig_Proj1, Su_Transitive.
apply T_Proj1 with (B := B2); eauto using T_Conv_E.
apply T_Proj1 with (B := B2); eauto using T_Conv_E.
** move => Γ A B ha0 ha1.
move /Proj2_Inv : ha0. move => [A0][B0][ha0]hSu0.
move /Proj2_Inv : ha1. move => [A1][B1][ha1]hSu1.
move : ih (ha0) (ha1) (hne0) (hne1); repeat move/[apply].
move => [ha [C [hS0 [hS1 [wta0 wta1]]]]].
split. sauto lq:on.
move /Sub_Bind_InvL : (hS0) => [i][A2][B2]hS2.
have hSu20 : Γ PBind PSig A2 B2 PBind PSig A0 B0
by eauto using Su_Transitive, Su_Eq.
have hSu21 : Γ PBind PSig A2 B2 PBind PSig A1 B1
by eauto using Su_Transitive, Su_Eq.
have hA20 : Γ A2 A0 by eauto using Su_Sig_Proj1.
have hA21 : Γ A2 A1 by eauto using Su_Sig_Proj1.
have {}wta0 : Γ a0 PBind PSig A2 B2 by eauto using T_Conv_E.
have {}wta1 : Γ a1 PBind PSig A2 B2 by eauto using T_Conv_E.
have haE : Γ PProj PL a0 PProj PL a1 A2
by sauto lq:on use:coqeq_sound_mutual.
exists (subst_PTm (scons (PProj PL a0) VarPTm) B2).
repeat split.
*** apply : Su_Transitive; eauto.
have : Γ PProj PL a0 PProj PL a0 A2
by qauto use:regularity, E_Refl.
sfirstorder use:Su_Sig_Proj2.
*** apply : Su_Transitive; eauto.
sfirstorder use:Su_Sig_Proj2.
*** eauto using T_Proj2.
*** apply : T_Conv.
apply : T_Proj2; eauto.
move /E_Symmetric in haE.
move /regularity_sub0 in hSu21.
sfirstorder use:bind_inst.
* sfirstorder use:T_Bot_Imp.
+ sfirstorder use:T_Bot_Imp.
Admitted.

View file

@ -1554,6 +1554,13 @@ Module EJoin.
hauto lq:on use:EReds.app_inv.
Qed.
Lemma hne_proj_inj n p0 p1 (a0 a1 : PTm n) :
R (PProj p0 a0) (PProj p1 a1) ->
p0 = p1 /\ R a0 a1.
Proof.
hauto lq:on rew:off use:EReds.proj_inv.
Qed.
End EJoin.
Module RERed.