Finish all the semantic theory for the system with type-directed eq

This commit is contained in:
Yiyun Liu 2025-02-06 15:42:35 -05:00
parent 733e86c611
commit aca7ebaf1e

View file

@ -883,3 +883,38 @@ Proof.
move => h /SemEq_SemWt [ha0][ha1]hae /SemEq_SemWt [hb0][hb1]hbe.
apply SemWt_SemEq; eauto using ST_Pair, DJoin.PairCong, SBind_inst, DJoin.cong, ST_Conv, ST_Pair.
Qed.
Lemma SE_Proj1 n Γ (a b : PTm n) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A.
Proof.
move => /SemEq_SemWt [ha][hb]he.
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj1.
Qed.
Lemma SE_Proj2 n Γ i (a b : PTm n) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B.
Proof.
move => hS.
move => /SemEq_SemWt [ha][hb]he.
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj2.
have h : Γ PProj PR b subst_PTm (scons (PProj PL b) VarPTm) B by eauto using ST_Proj2.
apply : ST_Conv. apply h.
apply : SBind_inst. eauto using ST_Proj1.
eauto.
hauto lq:on use: DJoin.cong, DJoin.ProjCong.
Qed.
Lemma SE_App n Γ i (b0 b1 a0 a1 : PTm n) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B.
Proof.
move => hPi.
move => /SemEq_SemWt [hb0][hb1]hb /SemEq_SemWt [ha0][ha1]ha.
apply SemWt_SemEq; eauto using DJoin.AppCong, ST_App.
apply : ST_Conv; eauto using ST_App, DJoin.cong, DJoin.symmetric, SBind_inst.
Qed.