Add simplified projection lemma
This commit is contained in:
parent
d053f93100
commit
48adb34946
3 changed files with 41 additions and 22 deletions
|
@ -58,25 +58,6 @@ Lemma E_Conv_E n Γ (a b : PTm n) A B i :
|
|||
Γ ⊢ a ≡ b ∈ B.
|
||||
Proof. qauto use:E_Conv, Su_Eq, E_Symmetric. Qed.
|
||||
|
||||
Lemma renaming_su' : forall n m Δ Γ (ξ : fin n -> fin m) (A B : PTm n) u U ,
|
||||
u = ren_PTm ξ A ->
|
||||
U = ren_PTm ξ B ->
|
||||
Γ ⊢ A ≲ B ->
|
||||
⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
Δ ⊢ u ≲ U.
|
||||
Proof. move => > -> ->. hauto l:on use:renaming. Qed.
|
||||
|
||||
Lemma weakening_su : forall n Γ (A0 A1 B : PTm n) i,
|
||||
Γ ⊢ B ∈ PUniv i ->
|
||||
Γ ⊢ A0 ≲ A1 ->
|
||||
funcomp (ren_PTm shift) (scons B Γ) ⊢ ren_PTm shift A0 ≲ ren_PTm shift A1.
|
||||
Proof.
|
||||
move => n Γ A0 A1 B i hB hlt.
|
||||
apply : renaming_su'; eauto.
|
||||
apply : Wff_Cons'; eauto.
|
||||
apply : renaming_shift; eauto.
|
||||
Qed.
|
||||
|
||||
(* Coquand's algorithm with subtyping *)
|
||||
Reserved Notation "a ∼ b" (at level 70).
|
||||
Reserved Notation "a ↔ b" (at level 70).
|
||||
|
@ -253,6 +234,9 @@ Proof.
|
|||
have [i [A2 [B2 h]]] : exists i A2 B2, Γ ⊢ A ≡ PBind PPi A2 B2 ∈ PUniv i by admit.
|
||||
have ? : Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A2 B2 by eauto using Su_Transitive, Su_Eq.
|
||||
have ? : Γ ⊢ PBind PPi A1 B1 ≲ PBind PPi A2 B2 by eauto using Su_Transitive, Su_Eq.
|
||||
have [j ?] : exists j, Γ ⊢ A0 ∈ PUniv j by qauto l:on use:Wff_Cons_Inv, wff_mutual.
|
||||
have [k ?] : exists j, Γ ⊢ A1 ∈ PUniv j by qauto l:on use:Wff_Cons_Inv, wff_mutual.
|
||||
have [l ?] : exists j, Γ ⊢ A2 ∈ PUniv j by hauto lq:on rew:off use:regularity, Bind_Inv.
|
||||
have [h2 h3] : Γ ⊢ A2 ≲ A0 /\ Γ ⊢ A2 ≲ A1 by hauto l:on use:Su_Pi_Proj1.
|
||||
apply E_Conv with (A := PBind PPi A2 B2); cycle 1.
|
||||
eauto using E_Symmetric, Su_Eq.
|
||||
|
|
|
@ -76,9 +76,6 @@ Proof.
|
|||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma regularity_sub0 : forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i.
|
||||
Proof. hauto lq:on use:regularity. Qed.
|
||||
|
||||
Lemma E_AppAbs : forall n (a : PTm (S n)) (b : PTm n) (Γ : fin n -> PTm n) (A : PTm n),
|
||||
Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A.
|
||||
Proof.
|
||||
|
|
|
@ -620,3 +620,41 @@ Proof.
|
|||
apply : Su_Eq. apply E_Refl; eassumption.
|
||||
- sfirstorder use:Su_Transitive.
|
||||
Qed.
|
||||
|
||||
Lemma renaming_su' : forall n m Δ Γ (ξ : fin n -> fin m) (A B : PTm n) u U ,
|
||||
u = ren_PTm ξ A ->
|
||||
U = ren_PTm ξ B ->
|
||||
Γ ⊢ A ≲ B ->
|
||||
⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
Δ ⊢ u ≲ U.
|
||||
Proof. move => > -> ->. hauto l:on use:renaming. Qed.
|
||||
|
||||
Lemma weakening_su : forall n Γ (A0 A1 B : PTm n) i,
|
||||
Γ ⊢ B ∈ PUniv i ->
|
||||
Γ ⊢ A0 ≲ A1 ->
|
||||
funcomp (ren_PTm shift) (scons B Γ) ⊢ ren_PTm shift A0 ≲ ren_PTm shift A1.
|
||||
Proof.
|
||||
move => n Γ A0 A1 B i hB hlt.
|
||||
apply : renaming_su'; eauto.
|
||||
apply : Wff_Cons'; eauto.
|
||||
apply : renaming_shift; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma regularity_sub0 : forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i.
|
||||
Proof. hauto lq:on use:regularity. Qed.
|
||||
|
||||
Lemma Su_Pi_Proj2_Var n Γ (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||
funcomp (ren_PTm shift) (scons A1 Γ) ⊢ B0 ≲ B1.
|
||||
Proof.
|
||||
move => h.
|
||||
have /Su_Pi_Proj1 h1 := h.
|
||||
have /regularity_sub0 [i h2] := h1.
|
||||
move /weakening_su : (h) h2. move => /[apply].
|
||||
move => h2.
|
||||
apply : Su_Pi_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
|
||||
apply E_Refl. apply T_Var' with (i := var_zero); eauto.
|
||||
sfirstorder use:wff_mutual.
|
||||
by asimpl.
|
||||
by asimpl.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Reference in a new issue