Finish all cases of subtyping

This commit is contained in:
Yiyun Liu 2025-02-17 22:50:25 -05:00
parent 735c7f2046
commit 9c5eb31edf
2 changed files with 89 additions and 4 deletions

View file

@ -946,6 +946,7 @@ Proof.
repeat split => //=; sfirstorder b:on use:ne_nf.
Qed.
Lemma algo_metric_bind n k p0 (A0 : PTm n) B0 p1 A1 B1 :
algo_metric k (PBind p0 A0 B0) (PBind p1 A1 B1) ->
p0 = p1 /\ exists j, j < k /\ algo_metric j A0 A1 /\ algo_metric j B0 B1.
@ -1526,6 +1527,32 @@ Proof.
rewrite /Sub.R. exists va', vb'. sfirstorder use:@relations.rtc_transitive.
Qed.
Lemma salgo_metric_pi n k (A0 : PTm n) B0 A1 B1 :
salgo_metric k (PBind PPi A0 B0) (PBind PPi A1 B1) ->
exists j, j < k /\ salgo_metric j A1 A0 /\ salgo_metric j B0 B1.
Proof.
move => [i][j][va][vb][h0][h1][h2][h3][h4]h5.
move : lored_nsteps_bind_inv h0 => /[apply].
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
move : lored_nsteps_bind_inv h1 => /[apply].
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
move /ESub.pi_inj : h4 => [? ?].
hauto qb:on solve+:lia.
Qed.
Lemma salgo_metric_sig n k (A0 : PTm n) B0 A1 B1 :
salgo_metric k (PBind PSig A0 B0) (PBind PSig A1 B1) ->
exists j, j < k /\ salgo_metric j A0 A1 /\ salgo_metric j B0 B1.
Proof.
move => [i][j][va][vb][h0][h1][h2][h3][h4]h5.
move : lored_nsteps_bind_inv h0 => /[apply].
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
move : lored_nsteps_bind_inv h1 => /[apply].
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
move /ESub.sig_inj : h4 => [? ?].
hauto qb:on solve+:lia.
Qed.
Lemma coqleq_complete' n k (a b : PTm n) :
salgo_metric k a b -> (forall Γ i, Γ a PUniv i -> Γ b PUniv i -> a b).
Proof.
@ -1548,19 +1575,45 @@ Proof.
have ? : p1 = p0 by
hauto lq:on rew:off use:salgo_metric_sub, Sub.bind_inj.
subst.
case : p0 h => //=; admit.
case : p0 h => //=.
** move /salgo_metric_pi.
move => [j [hj [hA hB]]] Γ i.
move /Bind_Univ_Inv => [hA1 hB1] /Bind_Univ_Inv [hA0 hB0].
have ihA : A0 A1 by hauto l:on.
econstructor; eauto using E_Refl; constructor=> //.
have ihA' : Γ A0 A1 by hauto l:on use:coqleq_sound_mutual.
suff : funcomp (ren_PTm shift) (scons A0 Γ) B1 PUniv i
by hauto l:on.
eauto using ctx_eq_subst_one.
** move /salgo_metric_sig.
move => [j [hj [hA hB]]] Γ i.
move /Bind_Univ_Inv => [hA1 hB1] /Bind_Univ_Inv [hA0 hB0].
have ihA : A1 A0 by hauto l:on.
econstructor; eauto using E_Refl; constructor=> //.
have ihA' : Γ A1 A0 by hauto l:on use:coqleq_sound_mutual.
suff : funcomp (ren_PTm shift) (scons A1 Γ) B0 PUniv i
by hauto l:on.
eauto using ctx_eq_subst_one.
* hauto lq:on use:salgo_metric_sub, Sub.bind_univ_noconf.
+ case : b fb => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'.
* hauto lq:on use:salgo_metric_sub, Sub.univ_bind_noconf.
* move => *. econstructor; eauto using rtc_refl.
hauto lq:on use:salgo_metric_sub, Sub.univ_inj, CLE_UnivCong.
(* Both cases are impossible *)
- admit.
- admit.
- have {}h : DJoin.R a b by
hauto lq:on use:salgo_metric_algo_metric, algo_metric_join.
case : b fb h => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'.
+ hauto lq:on use:DJoin.hne_bind_noconf.
+ hauto lq:on use:DJoin.hne_univ_noconf.
- have {}h : DJoin.R b a by
hauto lq:on use:salgo_metric_algo_metric, algo_metric_join, DJoin.symmetric.
case : a fa h => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'.
+ hauto lq:on use:DJoin.hne_bind_noconf.
+ hauto lq:on use:DJoin.hne_univ_noconf.
- move => Γ i ha hb.
econstructor; eauto using rtc_refl.
apply CLE_NeuNeu. move {ih}.
have {}h : algo_metric n a b by
hauto lq:on use:salgo_metric_algo_metric.
eapply coqeq_complete'; eauto.
Admitted.
Qed.

View file

@ -2337,6 +2337,17 @@ Module DJoin.
case : c => //=.
Qed.
Lemma hne_bind_noconf n (a b : PTm n) :
R a b -> ishne a -> isbind b -> False.
Proof.
move => [c [h0 h1]] h2 h3.
have {h0 h1 h2 h3} : ishne c /\ isbind c by
hauto l:on use:REReds.hne_preservation,
REReds.bind_preservation.
move => [].
case : c => //=.
Qed.
Lemma bind_inj n p0 p1 (A0 A1 : PTm n) B0 B1 :
DJoin.R (PBind p0 A0 B0) (PBind p1 A1 B1) ->
p0 = p1 /\ DJoin.R A0 A1 /\ DJoin.R B0 B1.
@ -2797,4 +2808,25 @@ End Sub.
Module ESub.
Definition R {n} (a b : PTm n) := exists c0 c1, rtc ERed.R a c0 /\ rtc ERed.R b c1 /\ Sub1.R c0 c1.
Lemma pi_inj n (A0 A1 : PTm n) B0 B1 :
R (PBind PPi A0 B0) (PBind PPi A1 B1) ->
R A1 A0 /\ R B0 B1.
Proof.
move => [u0 [u1 [h0 [h1 h2]]]].
move /EReds.bind_inv : h0 => [A2][B2][?][h3]h4. subst.
move /EReds.bind_inv : h1 => [A3][B3][?][h5]h6. subst.
sauto lq:on rew:off inv:Sub1.R.
Qed.
Lemma sig_inj n (A0 A1 : PTm n) B0 B1 :
R (PBind PSig A0 B0) (PBind PSig A1 B1) ->
R A0 A1 /\ R B0 B1.
Proof.
move => [u0 [u1 [h0 [h1 h2]]]].
move /EReds.bind_inv : h0 => [A2][B2][?][h3]h4. subst.
move /EReds.bind_inv : h1 => [A3][B3][?][h5]h6. subst.
sauto lq:on rew:off inv:Sub1.R.
Qed.
End ESub.