660 lines
24 KiB
Coq
660 lines
24 KiB
Coq
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing.
|
||
From Hammer Require Import Tactics.
|
||
Require Import ssreflect.
|
||
Require Import Psatz.
|
||
|
||
Lemma wff_mutual :
|
||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ⊢ Γ) /\
|
||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ⊢ Γ) /\
|
||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ⊢ Γ).
|
||
Proof. apply wt_mutual; eauto. Qed.
|
||
|
||
#[export]Hint Constructors Wt Wff Eq : wt.
|
||
|
||
Lemma renaming_up n m (ξ : fin n -> fin m) Δ Γ A :
|
||
renaming_ok Δ Γ ξ ->
|
||
renaming_ok (funcomp (ren_PTm shift) (scons (ren_PTm ξ A) Δ)) (funcomp (ren_PTm shift) (scons A Γ)) (upRen_PTm_PTm ξ) .
|
||
Proof.
|
||
move => h i.
|
||
destruct i as [i|].
|
||
asimpl. rewrite /renaming_ok in h.
|
||
rewrite /funcomp. rewrite -h.
|
||
by asimpl.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma Su_Wt n Γ a i :
|
||
Γ ⊢ a ∈ @PUniv n i ->
|
||
Γ ⊢ a ≲ a.
|
||
Proof. hauto lq:on ctrs:LEq, Eq. Qed.
|
||
|
||
Lemma Wt_Univ n Γ a A i
|
||
(h : Γ ⊢ a ∈ A) :
|
||
Γ ⊢ @PUniv n i ∈ PUniv (S i).
|
||
Proof.
|
||
hauto lq:on ctrs:Wt use:wff_mutual.
|
||
Qed.
|
||
|
||
Lemma Bind_Inv n Γ p (A : PTm n) B U :
|
||
Γ ⊢ PBind p A B ∈ U ->
|
||
exists i, Γ ⊢ A ∈ PUniv i /\
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i /\
|
||
Γ ⊢ PUniv i ≲ U.
|
||
Proof.
|
||
move E :(PBind p A B) => T h.
|
||
move : p A B E.
|
||
elim : n Γ T U / h => //=.
|
||
- hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ.
|
||
- hauto lq:on rew:off ctrs:LEq.
|
||
Qed.
|
||
|
||
(* Lemma Pi_Inv n Γ (A : PTm n) B U : *)
|
||
(* Γ ⊢ PBind PPi A B ∈ U -> *)
|
||
(* exists i, Γ ⊢ A ∈ PUniv i /\ *)
|
||
(* funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i /\ *)
|
||
(* Γ ⊢ PUniv i ≲ U. *)
|
||
(* Proof. *)
|
||
(* move E :(PBind PPi A B) => T h. *)
|
||
(* move : A B E. *)
|
||
(* elim : n Γ T U / h => //=. *)
|
||
(* - hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ. *)
|
||
(* - hauto lq:on rew:off ctrs:LEq. *)
|
||
(* Qed. *)
|
||
|
||
(* Lemma Bind_Inv n Γ (A : PTm n) B U : *)
|
||
(* Γ ⊢ PBind PSig A B ∈ U -> *)
|
||
(* exists i, Γ ⊢ A ∈ PUniv i /\ *)
|
||
(* funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i /\ *)
|
||
(* Γ ⊢ PUniv i ≲ U. *)
|
||
(* Proof. *)
|
||
(* move E :(PBind PSig A B) => T h. *)
|
||
(* move : A B E. *)
|
||
(* elim : n Γ T U / h => //=. *)
|
||
(* - hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ. *)
|
||
(* - hauto lq:on rew:off ctrs:LEq. *)
|
||
(* Qed. *)
|
||
|
||
Lemma T_App' n Γ (b a : PTm n) A B U :
|
||
U = subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊢ b ∈ PBind PPi A B ->
|
||
Γ ⊢ a ∈ A ->
|
||
Γ ⊢ PApp b a ∈ U.
|
||
Proof. move => ->. apply T_App. Qed.
|
||
|
||
Lemma T_Pair' n Γ (a b : PTm n) A B i U :
|
||
U = subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊢ a ∈ A ->
|
||
Γ ⊢ b ∈ U ->
|
||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊢ PPair a b ∈ PBind PSig A B.
|
||
Proof.
|
||
move => ->. eauto using T_Pair.
|
||
Qed.
|
||
|
||
Lemma T_Proj2' n Γ (a : PTm n) A B U :
|
||
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||
Γ ⊢ a ∈ PBind PSig A B ->
|
||
Γ ⊢ PProj PR a ∈ U.
|
||
Proof. move => ->. apply T_Proj2. Qed.
|
||
|
||
Lemma E_Proj2' n Γ i (a b : PTm n) A B U :
|
||
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ U.
|
||
Proof.
|
||
move => ->. apply E_Proj2.
|
||
Qed.
|
||
|
||
Lemma E_Bind' n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊢ A0 ∈ PUniv i ->
|
||
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||
Proof. hauto lq:on use:E_Bind, wff_mutual. Qed.
|
||
|
||
Lemma E_App' n Γ i (b0 b1 a0 a1 : PTm n) A B U :
|
||
U = subst_PTm (scons a0 VarPTm) B ->
|
||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ U.
|
||
Proof. move => ->. apply E_App. Qed.
|
||
|
||
Lemma E_AppAbs' n Γ (a : PTm (S n)) b A B i u U :
|
||
u = subst_PTm (scons b VarPTm) a ->
|
||
U = subst_PTm (scons b VarPTm ) B ->
|
||
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||
Γ ⊢ b ∈ A ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B ->
|
||
Γ ⊢ PApp (PAbs a) b ≡ u ∈ U.
|
||
move => -> ->. apply E_AppAbs. Qed.
|
||
|
||
Lemma E_ProjPair2' n Γ (a b : PTm n) A B i U :
|
||
U = subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊢ a ∈ A ->
|
||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ U.
|
||
Proof. move => ->. apply E_ProjPair2. Qed.
|
||
|
||
Lemma E_AppEta' n Γ (b : PTm n) A B i u :
|
||
u = (PApp (ren_PTm shift b) (VarPTm var_zero)) ->
|
||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊢ b ∈ PBind PPi A B ->
|
||
Γ ⊢ PAbs u ≡ b ∈ PBind PPi A B.
|
||
Proof. qauto l:on use:wff_mutual, E_AppEta. Qed.
|
||
|
||
Lemma Su_Pi_Proj2' n Γ (a0 a1 A0 A1 : PTm n) B0 B1 U T :
|
||
U = subst_PTm (scons a0 VarPTm) B0 ->
|
||
T = subst_PTm (scons a1 VarPTm) B1 ->
|
||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
Γ ⊢ a0 ≡ a1 ∈ A1 ->
|
||
Γ ⊢ U ≲ T.
|
||
Proof. move => -> ->. apply Su_Pi_Proj2. Qed.
|
||
|
||
Lemma Su_Sig_Proj2' n Γ (a0 a1 A0 A1 : PTm n) B0 B1 U T :
|
||
U = subst_PTm (scons a0 VarPTm) B0 ->
|
||
T = subst_PTm (scons a1 VarPTm) B1 ->
|
||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||
Γ ⊢ a0 ≡ a1 ∈ A0 ->
|
||
Γ ⊢ U ≲ T.
|
||
Proof. move => -> ->. apply Su_Sig_Proj2. Qed.
|
||
|
||
Lemma renaming :
|
||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||
Δ ⊢ ren_PTm ξ a ∈ ren_PTm ξ A) /\
|
||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||
Δ ⊢ ren_PTm ξ a ≡ ren_PTm ξ b ∈ ren_PTm ξ A) /\
|
||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||
Δ ⊢ ren_PTm ξ A ≲ ren_PTm ξ B).
|
||
Proof.
|
||
apply wt_mutual => //=; eauto 3 with wt.
|
||
- move => n Γ i hΓ _ m Δ ξ hΔ hξ.
|
||
rewrite hξ.
|
||
by apply T_Var.
|
||
- hauto lq:on rew:off ctrs:Wt, Wff use:renaming_up.
|
||
- move => n Γ a A B i hP ihP ha iha m Δ ξ hΔ hξ.
|
||
apply : T_Abs; eauto.
|
||
move : ihP(hΔ) (hξ); repeat move/[apply]. move/Bind_Inv.
|
||
hauto lq:on rew:off ctrs:Wff,Wt use:renaming_up.
|
||
- move => *. apply : T_App'; eauto. by asimpl.
|
||
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ξ hξ hΔ.
|
||
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||
- move => n Γ a A B ha iha m Δ ξ hΔ hξ. apply : T_Proj2'; eauto. by asimpl.
|
||
- hauto lq:on ctrs:Wt,LEq.
|
||
- hauto lq:on ctrs:Eq.
|
||
- hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up.
|
||
- move => n Γ a b A B i hPi ihPi ha iha m Δ ξ hΔ hξ.
|
||
move : ihPi (hΔ) (hξ). repeat move/[apply].
|
||
move => /Bind_Inv [j][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||
move {hPi}.
|
||
apply : E_Abs; eauto. qauto l:on ctrs:Wff use:renaming_up.
|
||
- move => *. apply : E_App'; eauto. by asimpl.
|
||
- move => n Γ a0 a1 b0 b1 A B i hA ihA ha iha hb ihb m Δ ξ hΔ hξ.
|
||
apply : E_Pair; eauto.
|
||
move : ihb hΔ hξ. repeat move/[apply].
|
||
by asimpl.
|
||
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||
- qauto l:on ctrs:Eq, LEq.
|
||
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ξ hΔ hξ.
|
||
move : ihP (hξ) (hΔ). repeat move/[apply].
|
||
move /Bind_Inv.
|
||
move => [j][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
|
||
hauto lq:on ctrs:Wff use:renaming_up.
|
||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ hΔ hξ.
|
||
move : {hP} ihP (hξ) (hΔ). repeat move/[apply].
|
||
move /Bind_Inv => [i0][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PSig (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) ∈ PUniv i0 by qauto l:on ctrs:Wt.
|
||
apply : E_ProjPair1; eauto.
|
||
move : ihb hξ hΔ. repeat move/[apply]. by asimpl.
|
||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ hΔ hξ.
|
||
apply : E_ProjPair2'; eauto. by asimpl.
|
||
move : ihb hξ hΔ; repeat move/[apply]. by asimpl.
|
||
- move => *.
|
||
apply : E_AppEta'; eauto. by asimpl.
|
||
- qauto l:on use:E_PairEta.
|
||
- hauto lq:on ctrs:LEq.
|
||
- qauto l:on ctrs:LEq.
|
||
- hauto lq:on ctrs:Wff use:renaming_up, Su_Pi.
|
||
- hauto lq:on ctrs:Wff use:Su_Sig, renaming_up.
|
||
- hauto q:on ctrs:LEq.
|
||
- hauto lq:on ctrs:LEq.
|
||
- qauto l:on ctrs:LEq.
|
||
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||
Qed.
|
||
|
||
Definition morphing_ok {n m} Δ Γ (ρ : fin n -> PTm m) :=
|
||
forall i, Δ ⊢ ρ i ∈ subst_PTm ρ (Γ i).
|
||
|
||
Lemma morphing_ren n m p Ξ Δ Γ
|
||
(ρ : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
⊢ Ξ ->
|
||
renaming_ok Ξ Δ ξ -> morphing_ok Δ Γ ρ ->
|
||
morphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ).
|
||
Proof.
|
||
move => hΞ hξ hρ.
|
||
move => i.
|
||
rewrite {1}/funcomp.
|
||
have -> :
|
||
subst_PTm (funcomp (ren_PTm ξ) ρ) (Γ i) =
|
||
ren_PTm ξ (subst_PTm ρ (Γ i)) by asimpl.
|
||
eapply renaming; eauto.
|
||
Qed.
|
||
|
||
Lemma morphing_ext n m Δ Γ (ρ : fin n -> PTm m) (a : PTm m) (A : PTm n) :
|
||
morphing_ok Δ Γ ρ ->
|
||
Δ ⊢ a ∈ subst_PTm ρ A ->
|
||
morphing_ok
|
||
Δ (funcomp (ren_PTm shift) (scons A Γ)) (scons a ρ).
|
||
Proof.
|
||
move => h ha i. destruct i as [i|]; by asimpl.
|
||
Qed.
|
||
|
||
Lemma T_Var' n Γ (i : fin n) U :
|
||
U = Γ i ->
|
||
⊢ Γ ->
|
||
Γ ⊢ VarPTm i ∈ U.
|
||
Proof. move => ->. apply T_Var. Qed.
|
||
|
||
Lemma renaming_wt : forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ -> Δ ⊢ ren_PTm ξ a ∈ ren_PTm ξ A.
|
||
Proof. sfirstorder use:renaming. Qed.
|
||
|
||
Lemma renaming_wt' : forall n m Δ Γ a A (ξ : fin n -> fin m) u U,
|
||
u = ren_PTm ξ a -> U = ren_PTm ξ A ->
|
||
Γ ⊢ a ∈ A -> ⊢ Δ ->
|
||
renaming_ok Δ Γ ξ -> Δ ⊢ u ∈ U.
|
||
Proof. hauto use:renaming_wt. Qed.
|
||
|
||
Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A :
|
||
renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift.
|
||
Proof. sfirstorder. Qed.
|
||
|
||
Lemma morphing_up n m Γ Δ (ρ : fin n -> PTm m) (A : PTm n) k :
|
||
morphing_ok Γ Δ ρ ->
|
||
Γ ⊢ subst_PTm ρ A ∈ PUniv k ->
|
||
morphing_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) (funcomp (ren_PTm shift) (scons A Δ)) (up_PTm_PTm ρ).
|
||
Proof.
|
||
move => h h1 [:hp]. apply morphing_ext.
|
||
rewrite /morphing_ok.
|
||
move => i.
|
||
rewrite {2}/funcomp.
|
||
apply : renaming_wt'; eauto. by asimpl.
|
||
abstract : hp. qauto l:on ctrs:Wff use:wff_mutual.
|
||
eauto using renaming_shift.
|
||
apply : T_Var';eauto. rewrite /funcomp. by asimpl.
|
||
Qed.
|
||
|
||
Lemma Wff_Cons' n Γ (A : PTm n) i :
|
||
Γ ⊢ A ∈ PUniv i ->
|
||
(* -------------------------------- *)
|
||
⊢ funcomp (ren_PTm shift) (scons A Γ).
|
||
Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed.
|
||
|
||
Lemma weakening_wt : forall n Γ (a A B : PTm n) i,
|
||
Γ ⊢ B ∈ PUniv i ->
|
||
Γ ⊢ a ∈ A ->
|
||
funcomp (ren_PTm shift) (scons B Γ) ⊢ ren_PTm shift a ∈ ren_PTm shift A.
|
||
Proof.
|
||
move => n Γ a A B i hB ha.
|
||
apply : renaming_wt'; eauto.
|
||
apply : Wff_Cons'; eauto.
|
||
apply : renaming_shift; eauto.
|
||
Qed.
|
||
|
||
Lemma weakening_wt' : forall n Γ (a A B : PTm n) i U u,
|
||
u = ren_PTm shift a ->
|
||
U = ren_PTm shift A ->
|
||
Γ ⊢ B ∈ PUniv i ->
|
||
Γ ⊢ a ∈ A ->
|
||
funcomp (ren_PTm shift) (scons B Γ) ⊢ u ∈ U.
|
||
Proof. move => > -> ->. apply weakening_wt. Qed.
|
||
|
||
Lemma morphing :
|
||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ρ : fin n -> PTm m), ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||
Δ ⊢ subst_PTm ρ a ∈ subst_PTm ρ A) /\
|
||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> forall m Δ (ρ : fin n -> PTm m), ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||
Δ ⊢ subst_PTm ρ a ≡ subst_PTm ρ b ∈ subst_PTm ρ A) /\
|
||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> forall m Δ (ρ : fin n -> PTm m), ⊢ Δ -> morphing_ok Δ Γ ρ ->
|
||
Δ ⊢ subst_PTm ρ A ≲ subst_PTm ρ B).
|
||
Proof.
|
||
apply wt_mutual => //=.
|
||
- hauto lq:on use:morphing_up, Wff_Cons', T_Bind.
|
||
- move => n Γ a A B i hP ihP ha iha m Δ ρ hΔ hρ.
|
||
move : ihP (hΔ) (hρ); repeat move/[apply].
|
||
move /Bind_Inv => [j][h0][h1]h2. move {hP}.
|
||
have ? : Δ ⊢ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv i by hauto lq:on ctrs:Wt.
|
||
apply : T_Abs; eauto.
|
||
apply : iha.
|
||
hauto lq:on use:Wff_Cons', Bind_Inv.
|
||
apply : morphing_up; eauto.
|
||
- move => *; apply : T_App'; eauto; by asimpl.
|
||
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ρ hρ hΔ.
|
||
eapply T_Pair' with (U := subst_PTm ρ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||
- hauto lq:on use:T_Proj1.
|
||
- move => *. apply : T_Proj2'; eauto. by asimpl.
|
||
- hauto lq:on ctrs:Wt,LEq.
|
||
- qauto l:on ctrs:Wt.
|
||
- hauto lq:on ctrs:Eq.
|
||
- hauto lq:on ctrs:Eq.
|
||
- hauto lq:on ctrs:Eq.
|
||
- hauto lq:on rew:off use:E_Bind', Wff_Cons, morphing_up.
|
||
- move => n Γ a b A B i hPi ihPi ha iha m Δ ρ hΔ hρ.
|
||
move : ihPi (hΔ) (hρ). repeat move/[apply].
|
||
move => /Bind_Inv [j][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||
move {hPi}.
|
||
apply : E_Abs; eauto. qauto l:on ctrs:Wff use:morphing_up.
|
||
- move => *. apply : E_App'; eauto. by asimpl.
|
||
- move => n Γ a0 a1 b0 b1 A B i hA ihA ha iha hb ihb m Δ ρ hΔ hρ.
|
||
apply : E_Pair; eauto.
|
||
move : ihb hΔ hρ. repeat move/[apply].
|
||
by asimpl.
|
||
- hauto q:on ctrs:Eq.
|
||
- move => *. apply : E_Proj2'; eauto. by asimpl.
|
||
- qauto l:on ctrs:Eq, LEq.
|
||
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ρ hΔ hρ.
|
||
move : ihP (hρ) (hΔ). repeat move/[apply].
|
||
move /Bind_Inv.
|
||
move => [j][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv j by qauto l:on ctrs:Wt.
|
||
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
|
||
hauto lq:on ctrs:Wff use:morphing_up.
|
||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hΔ hρ.
|
||
move : {hP} ihP (hρ) (hΔ). repeat move/[apply].
|
||
move /Bind_Inv => [i0][h0][h1]h2.
|
||
have ? : Δ ⊢ PBind PSig (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) ∈ PUniv i0 by qauto l:on ctrs:Wt.
|
||
apply : E_ProjPair1; eauto.
|
||
move : ihb hρ hΔ. repeat move/[apply]. by asimpl.
|
||
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hΔ hρ.
|
||
apply : E_ProjPair2'; eauto. by asimpl.
|
||
move : ihb hρ hΔ; repeat move/[apply]. by asimpl.
|
||
- move => *.
|
||
apply : E_AppEta'; eauto. by asimpl.
|
||
- qauto l:on use:E_PairEta.
|
||
- hauto lq:on ctrs:LEq.
|
||
- qauto l:on ctrs:LEq.
|
||
- hauto lq:on ctrs:Wff use:morphing_up, Su_Pi.
|
||
- hauto lq:on ctrs:Wff use:Su_Sig, morphing_up.
|
||
- hauto q:on ctrs:LEq.
|
||
- hauto lq:on ctrs:LEq.
|
||
- qauto l:on ctrs:LEq.
|
||
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
|
||
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
|
||
Qed.
|
||
|
||
Lemma morphing_wt : forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ρ : fin n -> PTm m), ⊢ Δ -> morphing_ok Δ Γ ρ -> Δ ⊢ subst_PTm ρ a ∈ subst_PTm ρ A.
|
||
Proof. sfirstorder use:morphing. Qed.
|
||
|
||
Lemma morphing_wt' : forall n m Δ Γ a A (ρ : fin n -> PTm m) u U,
|
||
u = subst_PTm ρ a -> U = subst_PTm ρ A ->
|
||
Γ ⊢ a ∈ A -> ⊢ Δ ->
|
||
morphing_ok Δ Γ ρ -> Δ ⊢ u ∈ U.
|
||
Proof. hauto use:morphing_wt. Qed.
|
||
|
||
Lemma morphing_id : forall n (Γ : fin n -> PTm n), ⊢ Γ -> morphing_ok Γ Γ VarPTm.
|
||
Proof.
|
||
move => n Γ hΓ.
|
||
rewrite /morphing_ok.
|
||
move => i. asimpl. by apply T_Var.
|
||
Qed.
|
||
|
||
Lemma substing_wt : forall n Γ (a : PTm (S n)) (b A : PTm n) B,
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B ->
|
||
Γ ⊢ b ∈ A ->
|
||
Γ ⊢ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm) B.
|
||
Proof.
|
||
move => n Γ a b A B ha hb [:hΓ]. apply : morphing_wt; eauto.
|
||
abstract : hΓ. sfirstorder use:wff_mutual.
|
||
apply morphing_ext; last by asimpl.
|
||
by apply morphing_id.
|
||
Qed.
|
||
|
||
(* Could generalize to all equal contexts *)
|
||
Lemma ctx_eq_subst_one n (A0 A1 : PTm n) i j Γ a A :
|
||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ a ∈ A ->
|
||
Γ ⊢ A0 ∈ PUniv i ->
|
||
Γ ⊢ A1 ∈ PUniv j ->
|
||
Γ ⊢ A1 ≲ A0 ->
|
||
funcomp (ren_PTm shift) (scons A1 Γ) ⊢ a ∈ A.
|
||
Proof.
|
||
move => h0 h1 h2 h3.
|
||
replace a with (subst_PTm VarPTm a); last by asimpl.
|
||
replace A with (subst_PTm VarPTm A); last by asimpl.
|
||
have ? : ⊢ Γ by sfirstorder use:wff_mutual.
|
||
apply : morphing_wt; eauto.
|
||
apply : Wff_Cons'; eauto.
|
||
move => k. destruct k as [k|].
|
||
- asimpl.
|
||
eapply weakening_wt' with (a := VarPTm k);eauto using T_Var.
|
||
by substify.
|
||
- move => [:hΓ'].
|
||
apply : T_Conv.
|
||
apply T_Var.
|
||
abstract : hΓ'.
|
||
eauto using Wff_Cons'.
|
||
rewrite /funcomp. asimpl. substify. asimpl.
|
||
renamify.
|
||
eapply renaming; eauto.
|
||
apply : renaming_shift; eauto.
|
||
Qed.
|
||
|
||
Lemma bind_inst n Γ p (A : PTm n) B i a0 a1 :
|
||
Γ ⊢ PBind p A B ∈ PUniv i ->
|
||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||
Γ ⊢ subst_PTm (scons a0 VarPTm) B ≲ subst_PTm (scons a1 VarPTm) B.
|
||
Proof.
|
||
move => h h0.
|
||
have {}h : Γ ⊢ PBind p A B ≲ PBind p A B by eauto using E_Refl, Su_Eq.
|
||
case : p h => //=; hauto l:on use:Su_Pi_Proj2, Su_Sig_Proj2.
|
||
Qed.
|
||
|
||
Lemma Cumulativity n Γ (a : PTm n) i j :
|
||
i <= j ->
|
||
Γ ⊢ a ∈ PUniv i ->
|
||
Γ ⊢ a ∈ PUniv j.
|
||
Proof.
|
||
move => h0 h1. apply : T_Conv; eauto.
|
||
apply Su_Univ => //=.
|
||
sfirstorder use:wff_mutual.
|
||
Qed.
|
||
|
||
Lemma T_Bind' n Γ i j p (A : PTm n) (B : PTm (S n)) :
|
||
Γ ⊢ A ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv j ->
|
||
Γ ⊢ PBind p A B ∈ PUniv (max i j).
|
||
Proof.
|
||
move => h0 h1.
|
||
have [*] : i <= max i j /\ j <= max i j by lia.
|
||
qauto l:on ctrs:Wt use:Cumulativity.
|
||
Qed.
|
||
|
||
Hint Resolve T_Bind' : wt.
|
||
|
||
Lemma regularity :
|
||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> forall i, exists j, Γ ⊢ Γ i ∈ PUniv j) /\
|
||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> exists i, Γ ⊢ A ∈ PUniv i) /\
|
||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊢ a ∈ A /\ Γ ⊢ b ∈ A /\ exists i, Γ ⊢ A ∈ PUniv i) /\
|
||
(forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i /\ Γ ⊢ B ∈ PUniv i).
|
||
Proof.
|
||
apply wt_mutual => //=; eauto with wt.
|
||
- move => n Γ A i hΓ ihΓ hA _ j.
|
||
destruct j as [j|].
|
||
have := ihΓ j.
|
||
move => [j0 hj].
|
||
exists j0. apply : renaming_wt' => //=; eauto using renaming_shift.
|
||
reflexivity. econstructor; eauto.
|
||
exists i. rewrite {2}/funcomp. simpl.
|
||
apply : renaming_wt'; eauto. reflexivity.
|
||
econstructor; eauto.
|
||
apply : renaming_shift; eauto.
|
||
- move => n Γ b a A B hb [i ihb] ha [j iha].
|
||
move /Bind_Inv : ihb => [k][h0][h1]h2.
|
||
move : substing_wt ha h1; repeat move/[apply].
|
||
move => h. exists k.
|
||
move : h. by asimpl.
|
||
- hauto lq:on use:Bind_Inv.
|
||
- move => n Γ a A B ha [i /Bind_Inv[j][h0][h1]h2].
|
||
exists j. have : Γ ⊢ PProj PL a ∈ A by qauto use:T_Proj1.
|
||
move : substing_wt h1; repeat move/[apply].
|
||
by asimpl.
|
||
- sfirstorder.
|
||
- sfirstorder.
|
||
- sfirstorder.
|
||
- move => n Γ i p A0 A1 B0 B1 hΓ ihΓ hA0
|
||
[i0 ihA0] hA [ihA [ihA' [i1 ihA'']]].
|
||
move => hB [ihB0 [ihB1 [i2 ihB2]]].
|
||
repeat split => //=.
|
||
qauto use:T_Bind.
|
||
apply T_Bind; eauto.
|
||
apply : ctx_eq_subst_one; eauto using Su_Eq, E_Symmetric.
|
||
eauto using T_Univ.
|
||
- hauto lq:on ctrs:Wt,Eq.
|
||
- move => n Γ i b0 b1 a0 a1 A B hP _ hb [ihb0 [ihb1 [i0 ihb2]]]
|
||
ha [iha0 [iha1 [i1 iha2]]].
|
||
repeat split.
|
||
qauto use:T_App.
|
||
apply : T_Conv; eauto.
|
||
qauto use:T_App.
|
||
move /E_Symmetric in ha.
|
||
by eauto using bind_inst.
|
||
hauto lq:on ctrs:Wt,Eq,LEq lq:on use:Bind_Inv, substing_wt.
|
||
- hauto lq:on use:bind_inst db:wt.
|
||
- hauto lq:on use:Bind_Inv db:wt.
|
||
- move => n Γ i a b A B hS _ hab [iha][ihb][j]ihs.
|
||
repeat split => //=; eauto with wt.
|
||
apply : T_Conv; eauto with wt.
|
||
move /E_Symmetric /E_Proj1 in hab.
|
||
eauto using bind_inst.
|
||
move /T_Proj1 in iha.
|
||
hauto lq:on ctrs:Wt,Eq,LEq use:Bind_Inv, substing_wt.
|
||
- hauto lq:on ctrs:Wt.
|
||
- hauto q:on use:substing_wt db:wt.
|
||
- hauto l:on use:bind_inst db:wt.
|
||
- move => n Γ b A B i hΓ ihΓ hP _ hb [i0 ihb].
|
||
repeat split => //=; eauto with wt.
|
||
have {}hb : funcomp (ren_PTm shift) (scons A Γ) ⊢ ren_PTm shift b ∈ ren_PTm shift (PBind PPi A B)
|
||
by hauto lq:on use:weakening_wt, Bind_Inv.
|
||
apply : T_Abs; eauto.
|
||
apply : T_App'; eauto; rewrite-/ren_PTm.
|
||
by asimpl.
|
||
apply T_Var. sfirstorder use:wff_mutual.
|
||
- hauto lq:on ctrs:Wt.
|
||
- move => n Γ A B C hA [i [ihA0 ihA1]] hC [j [ihC0 ihC1]].
|
||
have ? : ⊢ Γ by sfirstorder use:wff_mutual.
|
||
exists (max i j).
|
||
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
|
||
qauto l:on use:T_Conv, Su_Univ.
|
||
- move => n Γ i j hΓ *. exists (S (max i j)).
|
||
have [? ?] : S i <= S (Nat.max i j) /\ S j <= S (Nat.max i j) by lia.
|
||
hauto lq:on ctrs:Wt,LEq.
|
||
- move => n Γ A0 A1 B0 B1 i hΓ ihΓ hA0 _ hA1 [i0][ih0]ih1 hB[j0][ihB0]ihB1.
|
||
exists (max i0 j0).
|
||
split; eauto with wt.
|
||
apply T_Bind'; eauto.
|
||
sfirstorder use:ctx_eq_subst_one.
|
||
- move => n Γ A0 A1 B0 B1 i hΓ ihΓ hA1 _ hA0 [i0][ihA0]ihA1 hB[i1][ihB0]ihB1.
|
||
exists (max i0 i1). repeat split; eauto with wt.
|
||
apply T_Bind'; eauto.
|
||
sfirstorder use:ctx_eq_subst_one.
|
||
- sfirstorder.
|
||
- move => n Γ A0 A1 B0 B1 _ [i][ih0 ih1].
|
||
move /Bind_Inv : ih0 => [i0][h _].
|
||
move /Bind_Inv : ih1 => [i1][h' _].
|
||
exists (max i0 i1).
|
||
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
|
||
eauto using Cumulativity.
|
||
- move => n Γ A0 A1 B0 B1 _ [i][ih0 ih1].
|
||
move /Bind_Inv : ih0 => [i0][h _].
|
||
move /Bind_Inv : ih1 => [i1][h' _].
|
||
exists (max i0 i1).
|
||
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
|
||
eauto using Cumulativity.
|
||
- move => n Γ a0 a1 A0 A1 B0 B1 /Su_Pi_Proj1 hA1.
|
||
move => [i][ihP0]ihP1.
|
||
move => ha [iha0][iha1][j]ihA1.
|
||
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
|
||
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
|
||
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
|
||
exists (max i0 i1).
|
||
split.
|
||
+ apply Cumulativity with (i := i0); eauto.
|
||
have : Γ ⊢ a0 ∈ A0 by eauto using T_Conv.
|
||
move : substing_wt ih0';repeat move/[apply]. by asimpl.
|
||
+ apply Cumulativity with (i := i1); eauto.
|
||
move : substing_wt ih1' iha1;repeat move/[apply]. by asimpl.
|
||
- move => n Γ a0 a1 A0 A1 B0 B1 /Su_Sig_Proj1 hA1.
|
||
move => [i][ihP0]ihP1.
|
||
move => ha [iha0][iha1][j]ihA1.
|
||
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
|
||
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
|
||
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
|
||
exists (max i0 i1).
|
||
split.
|
||
+ apply Cumulativity with (i := i0); eauto.
|
||
move : substing_wt iha0 ih0';repeat move/[apply]. by asimpl.
|
||
+ apply Cumulativity with (i := i1); eauto.
|
||
have : Γ ⊢ a1 ∈ A1 by eauto using T_Conv.
|
||
move : substing_wt ih1';repeat move/[apply]. by asimpl.
|
||
Qed.
|
||
|
||
Lemma Var_Inv n Γ (i : fin n) A :
|
||
Γ ⊢ VarPTm i ∈ A ->
|
||
⊢ Γ /\ Γ ⊢ Γ i ≲ A.
|
||
Proof.
|
||
move E : (VarPTm i) => u hu.
|
||
move : i E.
|
||
elim : n Γ u A / hu=>//=.
|
||
- move => n Γ i hΓ i0 [?]. subst.
|
||
repeat split => //=.
|
||
have h : Γ ⊢ VarPTm i ∈ Γ i by eauto using T_Var.
|
||
eapply regularity in h.
|
||
move : h => [i0]?.
|
||
apply : Su_Eq. apply E_Refl; eassumption.
|
||
- sfirstorder use:Su_Transitive.
|
||
Qed.
|
||
|
||
Lemma renaming_su' : forall n m Δ Γ (ξ : fin n -> fin m) (A B : PTm n) u U ,
|
||
u = ren_PTm ξ A ->
|
||
U = ren_PTm ξ B ->
|
||
Γ ⊢ A ≲ B ->
|
||
⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||
Δ ⊢ u ≲ U.
|
||
Proof. move => > -> ->. hauto l:on use:renaming. Qed.
|
||
|
||
Lemma weakening_su : forall n Γ (A0 A1 B : PTm n) i,
|
||
Γ ⊢ B ∈ PUniv i ->
|
||
Γ ⊢ A0 ≲ A1 ->
|
||
funcomp (ren_PTm shift) (scons B Γ) ⊢ ren_PTm shift A0 ≲ ren_PTm shift A1.
|
||
Proof.
|
||
move => n Γ A0 A1 B i hB hlt.
|
||
apply : renaming_su'; eauto.
|
||
apply : Wff_Cons'; eauto.
|
||
apply : renaming_shift; eauto.
|
||
Qed.
|
||
|
||
Lemma regularity_sub0 : forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i.
|
||
Proof. hauto lq:on use:regularity. Qed.
|
||
|
||
Lemma Su_Pi_Proj2_Var n Γ (A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
funcomp (ren_PTm shift) (scons A1 Γ) ⊢ B0 ≲ B1.
|
||
Proof.
|
||
move => h.
|
||
have /Su_Pi_Proj1 h1 := h.
|
||
have /regularity_sub0 [i h2] := h1.
|
||
move /weakening_su : (h) h2. move => /[apply].
|
||
move => h2.
|
||
apply : Su_Pi_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
|
||
apply E_Refl. apply T_Var' with (i := var_zero); eauto.
|
||
sfirstorder use:wff_mutual.
|
||
by asimpl.
|
||
by asimpl.
|
||
Qed.
|