Add beta without the junk rules

This commit is contained in:
Yiyun Liu 2025-01-08 19:47:54 -05:00
parent 9ab338c9e1
commit ec03826083

View file

@ -245,6 +245,13 @@ Module Pars.
Qed. Qed.
End Pars. End Pars.
Definition var_or_bot {n} (a : Tm n) :=
match a with
| VarTm _ => true
| Bot => true
| _ => false
end.
(***************** Beta rules only ***********************) (***************** Beta rules only ***********************)
Module RPar. Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop := Inductive R {n} : Tm n -> Tm n -> Prop :=
@ -374,23 +381,56 @@ Module RPar.
qauto l:on ctrs:R inv:option. qauto l:on ctrs:R inv:option.
Qed. Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : Lemma var_or_bot_imp {n} (a b : Tm n) :
R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b. var_or_bot a ->
a = b -> ~~ var_or_bot b -> False.
Proof. Proof.
move E : (ren_Tm ξ a) => u h. hauto lq:on inv:Tm.
move : n ξ a E. elim : m u b/h. Qed.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
Lemma var_or_bot_up n m (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
(forall i, var_or_bot (up_Tm_Tm ρ i)).
Proof.
move => h /= [i|].
- asimpl.
move /(_ i) in h.
rewrite /funcomp.
move : (ρ i) h.
case => //=.
- sfirstorder.
Qed.
Local Ltac antiimp := qauto l:on use:var_or_bot_imp.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b.
Proof.
move E : (subst_Tm ρ a) => u hρ h.
move : n ρ hρ a E. elim : m u b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => c c0 [+ ?]. subst. move => c c0 [+ ?]. subst.
case : c => //=. case : c => //=; first by antiimp.
move => c [?]. subst. move => c [?]. subst.
spec_refl. spec_refl.
have /var_or_bot_up hρ' := hρ.
move : iha hρ' => /[apply] iha.
move : ihb hρ => /[apply] ihb.
spec_refl.
move : iha => [c1][ih0]?. subst. move : iha => [c1][ih0]?. subst.
move : ihb => [c2][ih1]?. subst. move : ihb => [c2][ih1]?. subst.
eexists. split. eexists. split.
apply AppAbs; eauto. apply AppAbs; eauto.
by asimpl. by asimpl.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ []//=;
move => []//= t t0 t1 [*]. subst. first by antiimp.
move => []//=; first by antiimp.
move => t t0 t1 [*]. subst.
have {}/iha := hρ => iha.
have {}/ihb := hρ => ihb.
have {}/ihc := hρ => ihc.
spec_refl. spec_refl.
move : iha => [? [*]]. move : iha => [? [*]].
move : ihb => [? [*]]. move : ihb => [? [*]].
@ -398,50 +438,300 @@ Module RPar.
eexists. split. eexists. split.
apply AppPair; hauto. subst. apply AppPair; hauto. subst.
by asimpl. by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst. - move => n p a0 a1 ha iha m ρ hρ []//=;
first by antiimp.
move => p0 []//= t [*]; first by antiimp. subst.
have /var_or_bot_up {}/iha := hρ => iha.
spec_refl. move : iha => [b0 [? ?]]. subst. spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl. eexists. split. apply ProjAbs; eauto. by asimpl.
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*]. - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
subst. spec_refl. first by antiimp.
move => p0 []//=; first by antiimp. move => t t0[*].
subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl.
move : iha => [b0 [? ?]]. move : iha => [b0 [? ?]].
move : ihb => [c0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair. eexists. split. by eauto using ProjPair.
hauto q:on. hauto q:on.
- move => n i m ξ []//=. - move => n i m ρ hρ []//=.
hauto l:on. hauto l:on.
- move => n a0 a1 ha iha m ξ []//= t [*]. subst. - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp.
move => t [*]. subst.
have /var_or_bot_up {}/iha := hρ => iha.
spec_refl. spec_refl.
move :iha => [b0 [? ?]]. subst. move :iha => [b0 [? ?]]. subst.
eexists. split. by apply AbsCong; eauto. eexists. split. by apply AbsCong; eauto.
by asimpl. by asimpl.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => t t0 [*]. subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl. spec_refl.
move : iha => [b0 [? ?]]. subst. move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply AppCong; eauto. eexists. split. by apply AppCong; eauto.
done. done.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => t t0[*]. subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl. spec_refl.
move : iha => [b0 [? ?]]. subst. move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply PairCong; eauto. eexists. split. by apply PairCong; eauto.
by asimpl. by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst. - move => n p a0 a1 ha iha m ρ hρ []//=;
first by antiimp.
move => p0 t [*]. subst.
have {}/iha := (hρ) => iha.
spec_refl. spec_refl.
move : iha => [b0 [? ?]]. subst. move : iha => [b0 [? ?]]. subst.
eexists. split. by apply ProjCong; eauto. eexists. split. apply ProjCong; eauto. reflexivity.
by asimpl. - move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=;
- move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst. first by antiimp.
move => ? t t0 [*]. subst.
have {}/iha := (hρ) => iha.
have /var_or_bot_up {}/ihB := (hρ) => ihB.
spec_refl. spec_refl.
move : iha => [b0 [? ?]]. move : iha => [b0 [? ?]].
move : ihB => [c0 [? ?]]. subst. move : ihB => [c0 [? ?]]. subst.
eexists. split. by apply BindCong; eauto. eexists. split. by apply BindCong; eauto.
by asimpl. by asimpl.
- move => n n0 ξ []//=. hauto l:on. - hauto q:on ctrs:R inv:Tm.
- move => n i n0 ξ []//=. hauto l:on. - move => n i n0 ρ hρ []//=; first by antiimp.
hauto l:on.
Qed. Qed.
End RPar. End RPar.
(***************** Beta rules only ***********************)
Module RPar'.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| ProjPair p a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| BindCong p A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (TBind p A0 B0) (TBind p A1 B1)
| BotCong :
R Bot Bot
| UnivCong i :
R (Univ i) (Univ i).
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma refl n (a : Tm n) : R a a.
Proof.
induction a; hauto lq:on ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : qauto ctrs:R use:ProjPair'.
Qed.
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)).
Proof. eauto using renaming. Qed.
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)).
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => + h. move : m ρ0 ρ1.
elim : n a b /h.
- move => *.
apply : AppAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R use:ProjPair' use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
Lemma cong n (a b : Tm (S n)) c d :
R a b ->
R c d ->
R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:option.
Qed.
Lemma var_or_bot_imp {n} (a b : Tm n) :
var_or_bot a ->
a = b -> ~~ var_or_bot b -> False.
Proof.
hauto lq:on inv:Tm.
Qed.
Lemma var_or_bot_up n m (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
(forall i, var_or_bot (up_Tm_Tm ρ i)).
Proof.
move => h /= [i|].
- asimpl.
move /(_ i) in h.
rewrite /funcomp.
move : (ρ i) h.
case => //=.
- sfirstorder.
Qed.
Local Ltac antiimp := qauto l:on use:var_or_bot_imp.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b.
Proof.
move E : (subst_Tm ρ a) => u hρ h.
move : n ρ hρ a E. elim : m u b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => c c0 [+ ?]. subst.
case : c => //=; first by antiimp.
move => c [?]. subst.
spec_refl.
have /var_or_bot_up hρ' := hρ.
move : iha hρ' => /[apply] iha.
move : ihb hρ => /[apply] ihb.
spec_refl.
move : iha => [c1][ih0]?. subst.
move : ihb => [c2][ih1]?. subst.
eexists. split.
apply AppAbs; eauto.
by asimpl.
- move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => p0 []//=; first by antiimp. move => t t0[*].
subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl.
move : iha => [b0 [? ?]].
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n i m ρ hρ []//=.
hauto l:on.
- move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp.
move => t [*]. subst.
have /var_or_bot_up {}/iha := hρ => iha.
spec_refl.
move :iha => [b0 [? ?]]. subst.
eexists. split. by apply AbsCong; eauto.
by asimpl.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => t t0 [*]. subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply AppCong; eauto.
done.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=;
first by antiimp.
move => t t0[*]. subst.
have {}/iha := (hρ) => iha.
have {}/ihb := (hρ) => ihb.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply PairCong; eauto.
by asimpl.
- move => n p a0 a1 ha iha m ρ hρ []//=;
first by antiimp.
move => p0 t [*]. subst.
have {}/iha := (hρ) => iha.
spec_refl.
move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjCong; eauto. reflexivity.
- move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=;
first by antiimp.
move => ? t t0 [*]. subst.
have {}/iha := (hρ) => iha.
have /var_or_bot_up {}/ihB := (hρ) => ihB.
spec_refl.
move : iha => [b0 [? ?]].
move : ihB => [c0 [? ?]]. subst.
eexists. split. by apply BindCong; eauto.
by asimpl.
- hauto q:on ctrs:R inv:Tm.
- move => n i n0 ρ hρ []//=; first by antiimp.
hauto l:on.
Qed.
End RPar'.
Module ERed. Module ERed.
Inductive R {n} : Tm n -> Tm n -> Prop := Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************) (****************** Eta ***********************)
@ -747,8 +1037,110 @@ Module RPars.
rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto lq:on use:morphing inv:option. Qed. Proof. hauto lq:on use:morphing inv:option. Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
rtc RPar.R (subst_Tm ρ a) b -> exists b0, rtc RPar.R a b0 /\ subst_Tm ρ b0 = b.
Proof.
move E :(subst_Tm ρ a) => u hρ h.
move : a E.
elim : u b /h.
- sfirstorder.
- move => a b c h0 h1 ih1 a0 ?. subst.
move /RPar.antirenaming : h0.
move /(_ hρ).
move => [b0 [h2 ?]]. subst.
hauto lq:on rew:off ctrs:rtc.
Qed.
End RPars. End RPars.
Module RPars'.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:RPar'.R use:RPar'.refl.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong n (a b : Tm (S n)) :
rtc RPar'.R a b ->
rtc RPar'.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar'.R a0 a1 ->
rtc RPar'.R b0 b1 ->
rtc RPar'.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma BindCong n p (a0 a1 : Tm n) b0 b1 :
rtc RPar'.R a0 a1 ->
rtc RPar'.R b0 b1 ->
rtc RPar'.R (TBind p a0 b0) (TBind p a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar'.R a0 a1 ->
rtc RPar'.R b0 b1 ->
rtc RPar'.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
Lemma ProjCong n p (a0 a1 : Tm n) :
rtc RPar'.R a0 a1 ->
rtc RPar'.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed.
Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
rtc RPar'.R a0 a1 ->
rtc RPar'.R (ren_Tm ξ a0) (ren_Tm ξ a1).
Proof.
induction 1.
- apply rtc_refl.
- eauto using RPar'.renaming, rtc_l.
Qed.
Lemma weakening n (a0 a1 : Tm n) :
rtc RPar'.R a0 a1 ->
rtc RPar'.R (ren_Tm shift a0) (ren_Tm shift a1).
Proof. apply renaming. Qed.
Lemma Abs_inv n (a : Tm (S n)) b :
rtc RPar'.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar'.R a a'.
Proof.
move E : (Abs a) => b0 h. move : a E.
elim : b0 b / h.
- hauto lq:on ctrs:rtc.
- hauto lq:on ctrs:rtc inv:RPar'.R, rtc.
Qed.
Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc RPar'.R a b ->
rtc RPar'.R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. induction 1; qauto l:on ctrs:rtc use:RPar'.substing. Qed.
Lemma substing n (a b : Tm (S n)) c :
rtc RPar'.R a b ->
rtc RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto lq:on use:morphing inv:option. Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
rtc RPar'.R (subst_Tm ρ a) b -> exists b0, rtc RPar'.R a b0 /\ subst_Tm ρ b0 = b.
Proof.
move E :(subst_Tm ρ a) => u hρ h.
move : a E.
elim : u b /h.
- sfirstorder.
- move => a b c h0 h1 ih1 a0 ?. subst.
move /RPar'.antirenaming : h0.
move /(_ hρ).
move => [b0 [h2 ?]]. subst.
hauto lq:on rew:off ctrs:rtc.
Qed.
End RPars'.
Lemma Abs_EPar n a (b : Tm n) : Lemma Abs_EPar n a (b : Tm n) :
EPar.R (Abs a) b -> EPar.R (Abs a) b ->
(exists d, EPar.R a d /\ (exists d, EPar.R a d /\
@ -1962,8 +2354,8 @@ end.
Lemma ne_nf n a : @ne n a -> nf a. Lemma ne_nf n a : @ne n a -> nf a.
Proof. elim : a => //=. Qed. Proof. elim : a => //=. Qed.
Definition wn {n} (a : Tm n) := exists b, rtc RPar.R a b /\ nf b. Definition wn {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ nf b.
Definition wne {n} (a : Tm n) := exists b, rtc RPar.R a b /\ ne b. Definition wne {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ ne b.
(* Weakly neutral implies weakly normal *) (* Weakly neutral implies weakly normal *)
Lemma wne_wn n a : @wne n a -> wn a. Lemma wne_wn n a : @wne n a -> wn a.
@ -1973,7 +2365,7 @@ Proof. sfirstorder use:ne_nf. Qed.
Lemma nf_wn n v : @nf n v -> wn v. Lemma nf_wn n v : @nf n v -> wn v.
Proof. sfirstorder ctrs:rtc. Qed. Proof. sfirstorder ctrs:rtc. Qed.
Lemma nf_refl n (a b : Tm n) (h : RPar.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Lemma nf_refl n (a b : Tm n) (h : RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a).
Proof. Proof.
elim : a b /h => //=; solve [hauto b:on]. elim : a b /h => //=; solve [hauto b:on].
Qed. Qed.
@ -1988,12 +2380,80 @@ Lemma wne_app n (a b : Tm n) :
wne a -> wn b -> wne (App a b). wne a -> wn b -> wne (App a b).
Proof. Proof.
move => [a0 [? ?]] [b0 [? ?]]. move => [a0 [? ?]] [b0 [? ?]].
exists (App a0 b0). hauto b:on use:RPars.AppCong. exists (App a0 b0). hauto b:on drew:off use:RPars'.AppCong.
Qed. Qed.
Lemma wn_abs (a : tm) (h : wn a) : wn (tAbs a). Lemma wn_abs n a (h : wn a) : @wn n (Abs a).
Proof. Proof.
move : h => [v [? ?]]. move : h => [v [? ?]].
exists (tAbs v). exists (Abs v).
eauto using S_Abs. eauto using RPars'.AbsCong.
Qed.
Lemma wn_bind n p A B : wn A -> wn B -> wn (@TBind n p A B).
Proof.
move => [A0 [? ?]] [B0 [? ?]].
exists (TBind p A0 B0).
hauto lqb:on use:RPars'.BindCong.
Qed.
Lemma wn_pair n (a b : Tm n) : wn a -> wn b -> wn (Pair a b).
Proof.
move => [a0 [? ?]] [b0 [? ?]].
exists (Pair a0 b0).
hauto lqb:on use:RPars'.PairCong.
Qed.
Lemma wne_proj n p (a : Tm n) : wne a -> wne (Proj p a).
Proof.
move => [a0 [? ?]].
exists (Proj p a0). hauto lqb:on use:RPars'.ProjCong.
Qed.
Create HintDb nfne.
#[export]Hint Resolve nf_wn ne_nf wne_wn nf_refl : nfne.
Lemma ne_nf_antiren n m (a : Tm n) (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
(ne (subst_Tm ρ a) -> ne a) /\ (nf (subst_Tm ρ a) -> nf a).
Proof.
move : m ρ. elim : n / a => //;
hauto b:on drew:off use:RPar.var_or_bot_up.
Qed.
Lemma wn_antirenaming n m a (ρ : fin n -> Tm m) :
(forall i, var_or_bot (ρ i)) ->
wn (subst_Tm ρ a) -> wn a.
Proof.
rewrite /wn => hρ.
move => [v [rv nfv]].
move /RPars'.antirenaming : rv.
move /(_ hρ) => [b [hb ?]]. subst.
exists b. split => //=.
move : nfv.
by eapply ne_nf_antiren.
Qed.
Lemma ext_wn n (a : Tm n) :
wn (App a Bot) ->
wn a.
Proof.
move E : (App a Bot) => a0 [v [hr hv]].
move : a E.
move : hv.
elim : a0 v / hr.
- hauto q:on inv:Tm ctrs:rtc b:on db: nfne.
- move => a0 a1 a2 hr0 hr1 ih hnfa2.
move /(_ hnfa2) in ih.
move => a.
case : a0 hr0=>// => b0 b1.
elim /RPar'.inv=>// _.
+ move => a0 a3 b2 b3 ? ? [? ?] ? [? ?]. subst.
have ? : b3 = Bot by hauto lq:on inv:RPar'.R. subst.
suff : wn (Abs a3) by hauto lq:on ctrs:RPar'.R, rtc unfold:wn.
have : wn (subst_Tm (scons Bot VarTm) a3) by sfirstorder.
move => h. apply wn_abs.
move : h. apply wn_antirenaming.
hauto lq:on rew:off inv:option.
+ hauto q:on inv:RPar'.R ctrs:rtc b:on.
Qed. Qed.