This commit is contained in:
Yiyun Liu 2025-01-08 15:31:40 -05:00
parent 602fe929bc
commit 9ab338c9e1
2 changed files with 180 additions and 50 deletions

View file

@ -373,6 +373,73 @@ Module RPar.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:option.
Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) :
R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b.
Proof.
move E : (ren_Tm ξ a) => u h.
move : n ξ a E. elim : m u b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
move => c c0 [+ ?]. subst.
case : c => //=.
move => c [?]. subst.
spec_refl.
move : iha => [c1][ih0]?. subst.
move : ihb => [c2][ih1]?. subst.
eexists. split.
apply AppAbs; eauto.
by asimpl.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
move => []//= t t0 t1 [*]. subst.
spec_refl.
move : iha => [? [*]].
move : ihb => [? [*]].
move : ihc => [? [*]].
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl.
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
subst. spec_refl.
move : iha => [b0 [? ?]].
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n i m ξ []//=.
hauto l:on.
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
spec_refl.
move :iha => [b0 [? ?]]. subst.
eexists. split. by apply AbsCong; eauto.
by asimpl.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply AppCong; eauto.
done.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply PairCong; eauto.
by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
eexists. split. by apply ProjCong; eauto.
by asimpl.
- move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]].
move : ihB => [c0 [? ?]]. subst.
eexists. split. by apply BindCong; eauto.
by asimpl.
- move => n n0 ξ []//=. hauto l:on.
- move => n i n0 ξ []//=. hauto l:on.
Qed.
End RPar.
Module ERed.
@ -1863,8 +1930,70 @@ Proof.
hauto l:on.
Qed.
Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
join a b ->
join (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
Fixpoint ne {n} (a : Tm n) :=
match a with
| VarTm i => true
| TBind _ A B => nf A && nf B
| Bot => false
| App a b => ne a && nf b
| Abs a => false
| Univ _ => false
| Proj _ a => ne a
| Pair _ _ => false
end
with nf {n} (a : Tm n) :=
match a with
| VarTm i => true
| TBind _ A B => nf A && nf B
| Bot => true
| App a b => ne a && nf b
| Abs a => nf a
| Univ _ => true
| Proj _ a => ne a
| Pair a b => nf a && nf b
end.
Lemma ne_nf n a : @ne n a -> nf a.
Proof. elim : a => //=. Qed.
Definition wn {n} (a : Tm n) := exists b, rtc RPar.R a b /\ nf b.
Definition wne {n} (a : Tm n) := exists b, rtc RPar.R a b /\ ne b.
(* Weakly neutral implies weakly normal *)
Lemma wne_wn n a : @wne n a -> wn a.
Proof. sfirstorder use:ne_nf. Qed.
(* Normal implies weakly normal *)
Lemma nf_wn n v : @nf n v -> wn v.
Proof. sfirstorder ctrs:rtc. Qed.
Lemma nf_refl n (a b : Tm n) (h : RPar.R a b) : (nf a -> b = a) /\ (ne a -> b = a).
Proof.
elim : a b /h => //=; solve [hauto b:on].
Qed.
Lemma ne_nf_ren n m (a : Tm n) (ξ : fin n -> fin m) :
(ne a <-> ne (ren_Tm ξ a)) /\ (nf a <-> nf (ren_Tm ξ a)).
Proof.
move : m ξ. elim : n / a => //=; solve [hauto b:on].
Qed.
Lemma wne_app n (a b : Tm n) :
wne a -> wn b -> wne (App a b).
Proof.
move => [a0 [? ?]] [b0 [? ?]].
exists (App a0 b0). hauto b:on use:RPars.AppCong.
Qed.
Lemma wn_abs (a : tm) (h : wn a) : wn (tAbs a).
Proof.
move : h => [v [? ?]].
exists (tAbs v).
eauto using S_Abs.
Qed.

View file

@ -6,18 +6,19 @@ Require Import ssreflect ssrbool.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..), rtc_subrel).
Import Psatz.
Definition ProdSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop :=
Definition ProdSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
forall a PB, PA a -> PF a PB -> PB (App b a).
Definition SumSpace (PA : Tm 0 -> Prop)
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop :=
Definition SumSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace p := if p is TPi then ProdSpace else SumSpace.
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop :=
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
@ -34,7 +35,7 @@ Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) :
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
PF = I j ->
j < i ->
Univ j i ;; I PF.
@ -42,16 +43,16 @@ Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN (i : nat) : Tm 0 -> (Tm 0 -> Prop) -> Prop by wf i lt :=
InterpUnivN i := @InterpExt i
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
(fun j A =>
match j <? i with
| left _ => exists PA, InterpUnivN j A PA
| left _ => exists PA, InterpUnivN n j A PA
| right _ => False
end).
Arguments InterpUnivN .
Arguments InterpUnivN {n}.
Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) :
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA ->
A i ;; I' PA.
@ -63,7 +64,7 @@ Proof.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) :
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA =
A i ;; I' PA.
@ -75,8 +76,8 @@ Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt i :
InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, A j PA).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
@ -92,9 +93,9 @@ Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
(h : TBind p A B i ;; I P) :
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) /\
@ -109,8 +110,8 @@ Proof.
hauto lq:on ctrs:InterpExt use:RPar_substone.
Qed.
Lemma InterpExt_Univ_inv i I j P
(h : Univ j i ;; I P) :
Lemma InterpExt_Univ_inv n i I j P
(h : Univ j : Tm n i ;; I P) :
P = I j /\ j < i.
Proof.
move : h.
@ -120,7 +121,7 @@ Proof.
- hauto lq:on rew:off inv:RPar.R.
Qed.
Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA :
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
A i ;; I PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) ->
TBind p A B i ;; I (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB)).
@ -128,7 +129,7 @@ Proof.
move => h0 h1. apply InterpExt_Bind =>//.
Qed.
Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA :
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
A i PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) ->
TBind p A B i (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB)).
@ -136,7 +137,7 @@ Proof.
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
Qed.
Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
i <= j ->
A i ;; I PA ->
A j ;; I PA.
@ -146,14 +147,14 @@ Proof.
hauto l:on ctrs:InterpExt solve+:(by lia).
Qed.
Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
A i PA -> forall j, i <= j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) :
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
RPar.R A B ->
B i ;; I P.
Proof.
@ -171,32 +172,32 @@ Proof.
hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : A i P) :
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : A i P) :
RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : B i ;; I P) :
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : B i ;; I P) :
rtc RPar.R A B ->
A i ;; I P.
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : A i ;; I P) :
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : A i ;; I P) :
rtc RPar.R A B ->
B i ;; I P.
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : A i P) :
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : A i P) :
rtc RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : B i P) :
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : B i P) :
rtc RPar.R A B ->
A i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
Lemma InterpExtInv i I (A : Tm 0) PA :
Lemma InterpExtInv n i I (A : Tm n) PA :
A i ;; I PA ->
exists B, hfb B /\ rtc RPar.R A B /\ B i ;; I PA.
Proof.
@ -210,17 +211,17 @@ Proof.
- hauto lq:on ctrs:rtc.
Qed.
Lemma RPars_Pars (A B : Tm 0) :
Lemma RPars_Pars (A B : Tm n) :
rtc RPar.R A B ->
rtc Par.R A B.
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
Lemma RPars_join (A B : Tm 0) :
Lemma RPars_join (A B : Tm n) :
rtc RPar.R A B -> join A B.
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b :
(forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
Lemma bindspace_iff p (PA : Tm n -> Prop) PF PF0 b :
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a, PA a -> exists PB0, PF0 a PB0) ->
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
@ -241,7 +242,7 @@ Proof.
hauto lq:on rew:off.
Qed.
Lemma InterpExt_Join i I (A B : Tm 0) PA PB :
Lemma InterpExt_Join i I (A B : Tm n) PA PB :
A i ;; I PA ->
B i ;; I PB ->
join A B ->
@ -281,7 +282,7 @@ Proof.
exfalso.
eauto using join_univ_pi_contra.
+ move => m _ [/RPars_join h0 + h1].
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive.
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
subst.
move /InterpExt_Univ_inv. firstorder.
- move => A A0 PA h.
@ -289,16 +290,16 @@ Proof.
eauto using join_transitive.
Qed.
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
Lemma InterpUniv_Join i (A B : Tm n) PA PB :
A i PA ->
B i PB ->
join A B ->
PA = PB.
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
Lemma InterpUniv_Bind_inv p i (A : Tm n) B P
(h : TBind p A B i P) :
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
A i PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i PB) /\
@ -307,22 +308,22 @@ Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
Lemma InterpUniv_Univ_inv i j P
(h : Univ j i P) :
P = (fun (A : Tm 0) => exists PA, A j PA) /\ j < i.
P = (fun (A : Tm n) => exists PA, A j PA) /\ j < i.
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
Lemma InterpExt_Functional i I (A B : Tm 0) PA PB :
Lemma InterpExt_Functional i I (A B : Tm n) PA PB :
A i ;; I PA ->
A i ;; I PB ->
PA = PB.
Proof. hauto use:InterpExt_Join, join_refl. Qed.
Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
Lemma InterpUniv_Functional i (A : Tm n) PA PB :
A i PA ->
A i PB ->
PA = PB.
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
Lemma InterpUniv_Join' i j (A B : Tm n) PA PB :
A i PA ->
B j PB ->
join A B ->
@ -344,7 +345,7 @@ Proof.
Qed.
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : TBind p A B i ;; I P) :
exists (PA : Tm 0 -> Prop),
exists (PA : Tm n -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB).
@ -366,13 +367,13 @@ Proof.
Qed.
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : TBind p A B i P) :
exists (PA : Tm 0 -> Prop),
exists (PA : Tm n -> Prop),
A i PA /\
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) /\
P = BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB).
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
Lemma InterpExt_back_clos i I (A : Tm 0) PA :
Lemma InterpExt_back_clos i I (A : Tm n) PA :
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (RPar.R a b) ->
@ -390,7 +391,7 @@ Proof.
- eauto.
Qed.
Lemma InterpUniv_back_clos i (A : Tm 0) PA :
Lemma InterpUniv_back_clos i (A : Tm n) PA :
A i PA ->
forall a b, (RPar.R a b) ->
PA b -> PA a.
@ -400,7 +401,7 @@ Proof.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
Qed.
Lemma InterpUniv_back_clos_star i (A : Tm 0) PA :
Lemma InterpUniv_back_clos_star i (A : Tm n) PA :
A i PA ->
forall a b, rtc RPar.R a b ->
PA b -> PA a.
@ -410,7 +411,7 @@ Proof.
hauto lq:on use:InterpUniv_back_clos.
Qed.
Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA,
Definition ρ_ok {n} Γ (ρ : fin n -> Tm n) := forall i m PA,
subst_Tm ρ (Γ i) m PA -> PA (ρ i).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, subst_Tm ρ A m PA /\ PA (subst_Tm ρ a).