From ec038260832f265a2425e5d9045c7b72bd3392b6 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Wed, 8 Jan 2025 19:47:54 -0500 Subject: [PATCH] Add beta without the junk rules --- theories/fp_red.v | 516 +++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 488 insertions(+), 28 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 26a2309..1277775 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -245,6 +245,13 @@ Module Pars. Qed. End Pars. +Definition var_or_bot {n} (a : Tm n) := + match a with + | VarTm _ => true + | Bot => true + | _ => false + end. + (***************** Beta rules only ***********************) Module RPar. Inductive R {n} : Tm n -> Tm n -> Prop := @@ -374,23 +381,56 @@ Module RPar. qauto l:on ctrs:R inv:option. Qed. - Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) : - R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b. + Lemma var_or_bot_imp {n} (a b : Tm n) : + var_or_bot a -> + a = b -> ~~ var_or_bot b -> False. Proof. - move E : (ren_Tm ξ a) => u h. - move : n ξ a E. elim : m u b/h. - - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=. + hauto lq:on inv:Tm. + Qed. + + Lemma var_or_bot_up n m (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + (forall i, var_or_bot (up_Tm_Tm ρ i)). + Proof. + move => h /= [i|]. + - asimpl. + move /(_ i) in h. + rewrite /funcomp. + move : (ρ i) h. + case => //=. + - sfirstorder. + Qed. + + Local Ltac antiimp := qauto l:on use:var_or_bot_imp. + + Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b. + Proof. + move E : (subst_Tm ρ a) => u hρ h. + move : n ρ hρ a E. elim : m u b/h. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. move => c c0 [+ ?]. subst. - case : c => //=. + case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. + have /var_or_bot_up hρ' := hρ. + move : iha hρ' => /[apply] iha. + move : ihb hρ => /[apply] ihb. + spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=. - move => []//= t t0 t1 [*]. subst. + - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ []//=; + first by antiimp. + move => []//=; first by antiimp. + move => t t0 t1 [*]. subst. + have {}/iha := hρ => iha. + have {}/ihb := hρ => ihb. + have {}/ihc := hρ => ihc. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. @@ -398,50 +438,300 @@ Module RPar. eexists. split. apply AppPair; hauto. subst. by asimpl. - - move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst. + - move => n p a0 a1 ha iha m ρ hρ []//=; + first by antiimp. + move => p0 []//= t [*]; first by antiimp. subst. + have /var_or_bot_up {}/iha := hρ => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - - move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*]. - subst. spec_refl. + - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => p0 []//=; first by antiimp. move => t t0[*]. + subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. + spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - - move => n i m ξ []//=. + - move => n i m ρ hρ []//=. hauto l:on. - - move => n a0 a1 ha iha m ξ []//= t [*]. subst. + - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. + move => t [*]. subst. + have /var_or_bot_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => t t0 [*]. subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => t t0[*]. subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - - move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst. + - move => n p a0 a1 ha iha m ρ hρ []//=; + first by antiimp. + move => p0 t [*]. subst. + have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. - eexists. split. by apply ProjCong; eauto. - by asimpl. - - move => n p A0 A1 B0 B1 ha iha hB ihB m ξ []//= ? t t0 [*]. subst. + eexists. split. apply ProjCong; eauto. reflexivity. + - move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=; + first by antiimp. + move => ? t t0 [*]. subst. + have {}/iha := (hρ) => iha. + have /var_or_bot_up {}/ihB := (hρ) => ihB. spec_refl. move : iha => [b0 [? ?]]. move : ihB => [c0 [? ?]]. subst. eexists. split. by apply BindCong; eauto. by asimpl. - - move => n n0 ξ []//=. hauto l:on. - - move => n i n0 ξ []//=. hauto l:on. + - hauto q:on ctrs:R inv:Tm. + - move => n i n0 ρ hρ []//=; first by antiimp. + hauto l:on. Qed. End RPar. +(***************** Beta rules only ***********************) +Module RPar'. + Inductive R {n} : Tm n -> Tm n -> Prop := + (***************** Beta ***********************) + | AppAbs a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1) + | ProjPair p a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1) + + + (*************** Congruence ********************) + | Var i : R (VarTm i) (VarTm i) + | AbsCong a0 a1 : + R a0 a1 -> + R (Abs a0) (Abs a1) + | AppCong a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (App a0 b0) (App a1 b1) + | PairCong a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (Pair a0 b0) (Pair a1 b1) + | ProjCong p a0 a1 : + R a0 a1 -> + R (Proj p a0) (Proj p a1) + | BindCong p A0 A1 B0 B1: + R A0 A1 -> + R B0 B1 -> + R (TBind p A0 B0) (TBind p A1 B1) + | BotCong : + R Bot Bot + | UnivCong i : + R (Univ i) (Univ i). + + Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop. + + Lemma refl n (a : Tm n) : R a a. + Proof. + induction a; hauto lq:on ctrs:R. + Qed. + + Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) : + t = subst_Tm (scons b1 VarTm) a1 -> + R a0 a1 -> + R b0 b1 -> + R (App (Abs a0) b0) t. + Proof. move => ->. apply AppAbs. Qed. + + Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t : + t = (if p is PL then a1 else b1) -> + R a0 a1 -> + R b0 b1 -> + R (Proj p (Pair a0 b0)) t. + Proof. move => > ->. apply ProjPair. Qed. + + Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) : + R a b -> R (ren_Tm ξ a) (ren_Tm ξ b). + Proof. + move => h. move : m ξ. + elim : n a b /h. + move => *; apply : AppAbs'; eauto; by asimpl. + all : qauto ctrs:R use:ProjPair'. + Qed. + + Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)). + Proof. eauto using renaming. Qed. + + Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b : + R a b -> + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). + Proof. hauto q:on inv:option. Qed. + + Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)). + Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed. + + Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> + R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b). + Proof. + move => + h. move : m ρ0 ρ1. + elim : n a b /h. + - move => *. + apply : AppAbs'; eauto using morphing_up. + by asimpl. + - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R use:morphing_up. + - hauto lq:on ctrs:R. + - hauto lq:on ctrs:R. + Qed. + + Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) : + R a b -> + R (subst_Tm ρ a) (subst_Tm ρ b). + Proof. hauto l:on use:morphing, refl. Qed. + + Lemma cong n (a b : Tm (S n)) c d : + R a b -> + R c d -> + R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b). + Proof. + move => h0 h1. apply morphing => //=. + qauto l:on ctrs:R inv:option. + Qed. + + Lemma var_or_bot_imp {n} (a b : Tm n) : + var_or_bot a -> + a = b -> ~~ var_or_bot b -> False. + Proof. + hauto lq:on inv:Tm. + Qed. + + Lemma var_or_bot_up n m (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + (forall i, var_or_bot (up_Tm_Tm ρ i)). + Proof. + move => h /= [i|]. + - asimpl. + move /(_ i) in h. + rewrite /funcomp. + move : (ρ i) h. + case => //=. + - sfirstorder. + Qed. + + Local Ltac antiimp := qauto l:on use:var_or_bot_imp. + + Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + R (subst_Tm ρ a) b -> exists b0, R a b0 /\ subst_Tm ρ b0 = b. + Proof. + move E : (subst_Tm ρ a) => u hρ h. + move : n ρ hρ a E. elim : m u b/h. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => c c0 [+ ?]. subst. + case : c => //=; first by antiimp. + move => c [?]. subst. + spec_refl. + have /var_or_bot_up hρ' := hρ. + move : iha hρ' => /[apply] iha. + move : ihb hρ => /[apply] ihb. + spec_refl. + move : iha => [c1][ih0]?. subst. + move : ihb => [c2][ih1]?. subst. + eexists. split. + apply AppAbs; eauto. + by asimpl. + - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => p0 []//=; first by antiimp. move => t t0[*]. + subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. + spec_refl. + move : iha => [b0 [? ?]]. + move : ihb => [c0 [? ?]]. subst. + eexists. split. by eauto using ProjPair. + hauto q:on. + - move => n i m ρ hρ []//=. + hauto l:on. + - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. + move => t [*]. subst. + have /var_or_bot_up {}/iha := hρ => iha. + spec_refl. + move :iha => [b0 [? ?]]. subst. + eexists. split. by apply AbsCong; eauto. + by asimpl. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => t t0 [*]. subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. + spec_refl. + move : iha => [b0 [? ?]]. subst. + move : ihb => [c0 [? ?]]. subst. + eexists. split. by apply AppCong; eauto. + done. + - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; + first by antiimp. + move => t t0[*]. subst. + have {}/iha := (hρ) => iha. + have {}/ihb := (hρ) => ihb. + spec_refl. + move : iha => [b0 [? ?]]. subst. + move : ihb => [c0 [? ?]]. subst. + eexists. split. by apply PairCong; eauto. + by asimpl. + - move => n p a0 a1 ha iha m ρ hρ []//=; + first by antiimp. + move => p0 t [*]. subst. + have {}/iha := (hρ) => iha. + spec_refl. + move : iha => [b0 [? ?]]. subst. + eexists. split. apply ProjCong; eauto. reflexivity. + - move => n p A0 A1 B0 B1 ha iha hB ihB m ρ hρ []//=; + first by antiimp. + move => ? t t0 [*]. subst. + have {}/iha := (hρ) => iha. + have /var_or_bot_up {}/ihB := (hρ) => ihB. + spec_refl. + move : iha => [b0 [? ?]]. + move : ihB => [c0 [? ?]]. subst. + eexists. split. by apply BindCong; eauto. + by asimpl. + - hauto q:on ctrs:R inv:Tm. + - move => n i n0 ρ hρ []//=; first by antiimp. + hauto l:on. + Qed. +End RPar'. + Module ERed. Inductive R {n} : Tm n -> Tm n -> Prop := (****************** Eta ***********************) @@ -747,8 +1037,110 @@ Module RPars. rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. + Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + rtc RPar.R (subst_Tm ρ a) b -> exists b0, rtc RPar.R a b0 /\ subst_Tm ρ b0 = b. + Proof. + move E :(subst_Tm ρ a) => u hρ h. + move : a E. + elim : u b /h. + - sfirstorder. + - move => a b c h0 h1 ih1 a0 ?. subst. + move /RPar.antirenaming : h0. + move /(_ hρ). + move => [b0 [h2 ?]]. subst. + hauto lq:on rew:off ctrs:rtc. + Qed. + End RPars. +Module RPars'. + + #[local]Ltac solve_s_rec := + move => *; eapply rtc_l; eauto; + hauto lq:on ctrs:RPar'.R use:RPar'.refl. + + #[local]Ltac solve_s := + repeat (induction 1; last by solve_s_rec); apply rtc_refl. + + Lemma AbsCong n (a b : Tm (S n)) : + rtc RPar'.R a b -> + rtc RPar'.R (Abs a) (Abs b). + Proof. solve_s. Qed. + + Lemma AppCong n (a0 a1 b0 b1 : Tm n) : + rtc RPar'.R a0 a1 -> + rtc RPar'.R b0 b1 -> + rtc RPar'.R (App a0 b0) (App a1 b1). + Proof. solve_s. Qed. + + Lemma BindCong n p (a0 a1 : Tm n) b0 b1 : + rtc RPar'.R a0 a1 -> + rtc RPar'.R b0 b1 -> + rtc RPar'.R (TBind p a0 b0) (TBind p a1 b1). + Proof. solve_s. Qed. + + Lemma PairCong n (a0 a1 b0 b1 : Tm n) : + rtc RPar'.R a0 a1 -> + rtc RPar'.R b0 b1 -> + rtc RPar'.R (Pair a0 b0) (Pair a1 b1). + Proof. solve_s. Qed. + + Lemma ProjCong n p (a0 a1 : Tm n) : + rtc RPar'.R a0 a1 -> + rtc RPar'.R (Proj p a0) (Proj p a1). + Proof. solve_s. Qed. + + Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : + rtc RPar'.R a0 a1 -> + rtc RPar'.R (ren_Tm ξ a0) (ren_Tm ξ a1). + Proof. + induction 1. + - apply rtc_refl. + - eauto using RPar'.renaming, rtc_l. + Qed. + + Lemma weakening n (a0 a1 : Tm n) : + rtc RPar'.R a0 a1 -> + rtc RPar'.R (ren_Tm shift a0) (ren_Tm shift a1). + Proof. apply renaming. Qed. + + Lemma Abs_inv n (a : Tm (S n)) b : + rtc RPar'.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar'.R a a'. + Proof. + move E : (Abs a) => b0 h. move : a E. + elim : b0 b / h. + - hauto lq:on ctrs:rtc. + - hauto lq:on ctrs:rtc inv:RPar'.R, rtc. + Qed. + + Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) : + rtc RPar'.R a b -> + rtc RPar'.R (subst_Tm ρ a) (subst_Tm ρ b). + Proof. induction 1; qauto l:on ctrs:rtc use:RPar'.substing. Qed. + + Lemma substing n (a b : Tm (S n)) c : + rtc RPar'.R a b -> + rtc RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). + Proof. hauto lq:on use:morphing inv:option. Qed. + + Lemma antirenaming n m (a : Tm n) (b : Tm m) (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + rtc RPar'.R (subst_Tm ρ a) b -> exists b0, rtc RPar'.R a b0 /\ subst_Tm ρ b0 = b. + Proof. + move E :(subst_Tm ρ a) => u hρ h. + move : a E. + elim : u b /h. + - sfirstorder. + - move => a b c h0 h1 ih1 a0 ?. subst. + move /RPar'.antirenaming : h0. + move /(_ hρ). + move => [b0 [h2 ?]]. subst. + hauto lq:on rew:off ctrs:rtc. + Qed. + +End RPars'. + Lemma Abs_EPar n a (b : Tm n) : EPar.R (Abs a) b -> (exists d, EPar.R a d /\ @@ -1962,8 +2354,8 @@ end. Lemma ne_nf n a : @ne n a -> nf a. Proof. elim : a => //=. Qed. -Definition wn {n} (a : Tm n) := exists b, rtc RPar.R a b /\ nf b. -Definition wne {n} (a : Tm n) := exists b, rtc RPar.R a b /\ ne b. +Definition wn {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ nf b. +Definition wne {n} (a : Tm n) := exists b, rtc RPar'.R a b /\ ne b. (* Weakly neutral implies weakly normal *) Lemma wne_wn n a : @wne n a -> wn a. @@ -1973,7 +2365,7 @@ Proof. sfirstorder use:ne_nf. Qed. Lemma nf_wn n v : @nf n v -> wn v. Proof. sfirstorder ctrs:rtc. Qed. -Lemma nf_refl n (a b : Tm n) (h : RPar.R a b) : (nf a -> b = a) /\ (ne a -> b = a). +Lemma nf_refl n (a b : Tm n) (h : RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Proof. elim : a b /h => //=; solve [hauto b:on]. Qed. @@ -1988,12 +2380,80 @@ Lemma wne_app n (a b : Tm n) : wne a -> wn b -> wne (App a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. - exists (App a0 b0). hauto b:on use:RPars.AppCong. + exists (App a0 b0). hauto b:on drew:off use:RPars'.AppCong. Qed. -Lemma wn_abs (a : tm) (h : wn a) : wn (tAbs a). +Lemma wn_abs n a (h : wn a) : @wn n (Abs a). Proof. move : h => [v [? ?]]. - exists (tAbs v). - eauto using S_Abs. + exists (Abs v). + eauto using RPars'.AbsCong. +Qed. + +Lemma wn_bind n p A B : wn A -> wn B -> wn (@TBind n p A B). +Proof. + move => [A0 [? ?]] [B0 [? ?]]. + exists (TBind p A0 B0). + hauto lqb:on use:RPars'.BindCong. +Qed. + +Lemma wn_pair n (a b : Tm n) : wn a -> wn b -> wn (Pair a b). +Proof. + move => [a0 [? ?]] [b0 [? ?]]. + exists (Pair a0 b0). + hauto lqb:on use:RPars'.PairCong. +Qed. + +Lemma wne_proj n p (a : Tm n) : wne a -> wne (Proj p a). +Proof. + move => [a0 [? ?]]. + exists (Proj p a0). hauto lqb:on use:RPars'.ProjCong. +Qed. + +Create HintDb nfne. +#[export]Hint Resolve nf_wn ne_nf wne_wn nf_refl : nfne. + +Lemma ne_nf_antiren n m (a : Tm n) (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + (ne (subst_Tm ρ a) -> ne a) /\ (nf (subst_Tm ρ a) -> nf a). +Proof. + move : m ρ. elim : n / a => //; + hauto b:on drew:off use:RPar.var_or_bot_up. +Qed. + +Lemma wn_antirenaming n m a (ρ : fin n -> Tm m) : + (forall i, var_or_bot (ρ i)) -> + wn (subst_Tm ρ a) -> wn a. +Proof. + rewrite /wn => hρ. + move => [v [rv nfv]]. + move /RPars'.antirenaming : rv. + move /(_ hρ) => [b [hb ?]]. subst. + exists b. split => //=. + move : nfv. + by eapply ne_nf_antiren. +Qed. + +Lemma ext_wn n (a : Tm n) : + wn (App a Bot) -> + wn a. +Proof. + move E : (App a Bot) => a0 [v [hr hv]]. + move : a E. + move : hv. + elim : a0 v / hr. + - hauto q:on inv:Tm ctrs:rtc b:on db: nfne. + - move => a0 a1 a2 hr0 hr1 ih hnfa2. + move /(_ hnfa2) in ih. + move => a. + case : a0 hr0=>// => b0 b1. + elim /RPar'.inv=>// _. + + move => a0 a3 b2 b3 ? ? [? ?] ? [? ?]. subst. + have ? : b3 = Bot by hauto lq:on inv:RPar'.R. subst. + suff : wn (Abs a3) by hauto lq:on ctrs:RPar'.R, rtc unfold:wn. + have : wn (subst_Tm (scons Bot VarTm) a3) by sfirstorder. + move => h. apply wn_abs. + move : h. apply wn_antirenaming. + hauto lq:on rew:off inv:option. + + hauto q:on inv:RPar'.R ctrs:rtc b:on. Qed.