Add semantic rules for function beta and eta

This commit is contained in:
Yiyun Liu 2025-02-09 16:12:57 -05:00
parent 4396786701
commit ab1bd8eef8
3 changed files with 132 additions and 16 deletions

View file

@ -9,10 +9,10 @@ Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
Γ ->
Γ VarPTm i Γ i
| T_Bind n Γ i j p (A : PTm n) (B : PTm (S n)) :
| T_Bind n Γ i p (A : PTm n) (B : PTm (S n)) :
Γ A PUniv i ->
funcomp (ren_PTm shift) (scons A Γ) B PUniv j ->
Γ PBind p A B PUniv (max i j)
funcomp (ren_PTm shift) (scons A Γ) B PUniv i ->
Γ PBind p A B PUniv i
| T_Abs n Γ (a : PTm (S n)) A B i :
Γ PBind PPi A B (PUniv i) ->
@ -61,11 +61,12 @@ with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop :=
Γ b c A ->
Γ a c A
| E_Bind n Γ i j p (A0 A1 : PTm n) B0 B1 :
| E_Bind n Γ i p (A0 A1 : PTm n) B0 B1 :
Γ ->
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv j ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv (max i j)
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_Abs n Γ (a b : PTm (S n)) A B i :
Γ PBind PPi A B (PUniv i) ->