Add semantic rules for function beta and eta
This commit is contained in:
parent
4396786701
commit
ab1bd8eef8
3 changed files with 132 additions and 16 deletions
|
@ -24,6 +24,71 @@ Proof.
|
|||
by asimpl.
|
||||
Qed.
|
||||
|
||||
Lemma Su_Wt n Γ a i :
|
||||
Γ ⊢ a ∈ @PUniv n i ->
|
||||
Γ ⊢ a ≲ a.
|
||||
Proof. hauto lq:on ctrs:LEq, Eq. Qed.
|
||||
|
||||
Lemma Wt_Univ n Γ a A i
|
||||
(h : Γ ⊢ a ∈ A) :
|
||||
Γ ⊢ @PUniv n i ∈ PUniv (S i).
|
||||
Proof.
|
||||
hauto lq:on ctrs:Wt use:wff_mutual.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma Pi_Inv n Γ (A : PTm n) B U :
|
||||
Γ ⊢ PBind PPi A B ∈ U ->
|
||||
exists i, Γ ⊢ A ∈ PUniv i /\
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i /\
|
||||
Γ ⊢ PUniv i ≲ U.
|
||||
Proof.
|
||||
move E :(PBind PPi A B) => T h.
|
||||
move : A B E.
|
||||
elim : n Γ T U / h => //=.
|
||||
- hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
(* Lemma regularity : *)
|
||||
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> forall i, exists j, Γ ⊢ Γ i ∈ PUniv j) /\ *)
|
||||
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> exists i, Γ ⊢ A ∈ PUniv i) /\ *)
|
||||
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊢ a ∈ A /\ Γ ⊢ b ∈ A /\ exists i, Γ ⊢ A ∈ PUniv i) /\ *)
|
||||
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i /\ Γ ⊢ A ∈ PUniv i). *)
|
||||
(* Proof. *)
|
||||
(* apply wt_mutual => //=. *)
|
||||
(* - admit. *)
|
||||
(* - admit. *)
|
||||
|
||||
Lemma T_App' n Γ (b a : PTm n) A B U :
|
||||
U = subst_PTm (scons a VarPTm) B ->
|
||||
Γ ⊢ b ∈ PBind PPi A B ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ PApp b a ∈ U.
|
||||
Proof. move => ->. apply T_App. Qed.
|
||||
|
||||
Lemma T_Pair' n Γ (a b : PTm n) A B i U :
|
||||
U = subst_PTm (scons a VarPTm) B ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ b ∈ U ->
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ PPair a b ∈ PBind PSig A B.
|
||||
Proof.
|
||||
move => ->. eauto using T_Pair.
|
||||
Qed.
|
||||
|
||||
Lemma T_Proj2' n Γ (a : PTm n) A B U :
|
||||
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PR a ∈ U.
|
||||
Proof. move => ->. apply T_Proj2. Qed.
|
||||
|
||||
Lemma E_Bind' n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||||
Proof. hauto lq:on use:E_Bind, wff_mutual. Qed.
|
||||
|
||||
Lemma renaming :
|
||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\
|
||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ ->
|
||||
|
@ -40,6 +105,14 @@ Proof.
|
|||
- hauto lq:on rew:off ctrs:Wt, Wff use:renaming_up.
|
||||
- move => n Γ a A B i hP ihP ha iha m Δ ξ hΔ hξ.
|
||||
apply : T_Abs; eauto.
|
||||
apply iha; last by apply renaming_up.
|
||||
econstructor; eauto.
|
||||
by apply renaming_up.
|
||||
move : ihP(hΔ) (hξ); repeat move/[apply]. move/Pi_Inv.
|
||||
hauto lq:on rew:off ctrs:Wff,Wt use:renaming_up.
|
||||
- move => *. apply : T_App'; eauto. by asimpl.
|
||||
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ξ hξ hΔ.
|
||||
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
|
||||
- move => n Γ a A B ha iha m Δ ξ hΔ hξ. apply : T_Proj2'; eauto. by asimpl.
|
||||
- hauto lq:on ctrs:Wt,LEq.
|
||||
- hauto lq:on ctrs:Eq.
|
||||
- move => n Γ i p A0 A1 B0 B1 hΓ _ hA ihA hB ihB m Δ ξ hΔ hξ.
|
||||
apply E_Bind'; eauto.
|
||||
apply ihB; last by hauto l:on use:renaming_up.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue