Add simplified projection lemma
This commit is contained in:
parent
d053f93100
commit
48adb34946
3 changed files with 41 additions and 22 deletions
|
@ -76,9 +76,6 @@ Proof.
|
|||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma regularity_sub0 : forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> exists i, Γ ⊢ A ∈ PUniv i.
|
||||
Proof. hauto lq:on use:regularity. Qed.
|
||||
|
||||
Lemma E_AppAbs : forall n (a : PTm (S n)) (b : PTm n) (Γ : fin n -> PTm n) (A : PTm n),
|
||||
Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A.
|
||||
Proof.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue