pair-eta/theories/logrel.v

289 lines
9.6 KiB
Coq

Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Require Import fp_red.
From Hammer Require Import Tactics.
From Equations Require Import Equations.
Require Import ssreflect ssrbool.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..), rtc_subrel).
Definition ProdSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
forall a PB, PA a -> PF a PB -> PB (App b a).
Definition SumSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else @SumSpace n.
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) ->
TBind p A B i ;; I BindSpace p PA PF
| InterpExt_Univ j :
j < i ->
Univ j i ;; I (I n j)
| InterpExt_Step A A0 PA :
RPar.R A A0 ->
A0 i ;; I PA ->
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' {n} i I j (PF : Tm n -> Prop) :
PF = I n j ->
j < i ->
Univ j i ;; I PF.
Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
(fun n j A =>
match j <? i with
| left _ => exists PA, InterpUnivN n j A PA
| right _ => False
end).
Arguments InterpUnivN {n}.
Lemma InterpExt_lt_impl {n : nat} i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I n j = I' n j) ->
A i ;; I PA ->
A i ;; I' PA.
Proof.
move => hI h.
elim : A PA /h.
- hauto lq:on rew:off ctrs:InterpExt.
- hauto q:on ctrs:InterpExt.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq {n : nat} i I I' A (PA : Tm n -> Prop) :
(forall j, j < i -> I n j = I' n j) ->
A i ;; I PA =
A i ;; I' PA.
Proof.
move => hI. apply propositional_extensionality.
have : forall j, j < i -> I' n j = I n j by sfirstorder.
firstorder using InterpExt_lt_impl.
Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun n j (A : Tm n) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
set I0 := (fun _ => _).
set I1 := (fun _ => _).
apply InterpExt_lt_eq.
hauto q:on.
Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
(h : TBind p A B i ;; I P) :
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
A i ;; I PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_Tm (scons a VarTm) B i ;; I PB) /\
P = BindSpace p PA PF.
Proof.
move E : (TBind p A B) h => T h.
move : A B E.
elim : T P / h => //.
- hauto l:on.
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
hauto lq:on ctrs:InterpExt use:RPar_substone.
Qed.
Lemma InterpExt_Univ_inv n i I j P
(h : @Univ n j i ;; I P) :
P = I n j /\ j < i.
Proof.
move : h.
move E : (@Univ n j) => T h. move : j E.
elim : T P /h => //.
- hauto l:on.
- hauto lq:on rew:off inv:RPar.R.
Qed.
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
A i ;; I PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i ;; I PB) ->
TBind p A B i ;; I (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i ;; I PB)).
Proof.
move => h0 h1. apply InterpExt_Bind =>//.
Qed.
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
A i PA ->
(forall a, PA a -> exists PB, subst_Tm (scons a VarTm) B i PB) ->
TBind p A B i (BindSpace p PA (fun a PB => subst_Tm (scons a VarTm) B i PB)).
Proof.
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
Qed.
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
i < j ->
A i ;; I PA ->
A j ;; I PA.
Proof.
move => h h0.
elim : A PA /h0;
hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans.
Qed.
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
A i PA -> forall j, i < j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
RPar.R A B ->
B i ;; I P.
Proof.
move : B.
elim : A P / h; auto.
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
elim /RPar.inv : hT => //.
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
apply InterpExt_Bind; auto => a PB hPB0.
apply : ihPB; eauto.
sfirstorder use:RPar.cong, RPar.refl.
- hauto lq:on inv:RPar.R ctrs:InterpExt.
- move => A B P h0 h1 ih1 C hC.
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : A i P) :
RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : B i ;; I P) :
rtc RPar.R A B ->
A i ;; I P.
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : A i ;; I P) :
rtc RPar.R A B ->
B i ;; I P.
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : A i P) :
rtc RPar.R A B ->
B i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : B i P) :
rtc RPar.R A B ->
A i P.
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
Lemma InterpExtInv n i I (A : Tm n) PA :
A i ;; I PA ->
exists B, hfb B /\ rtc RPar.R A B /\ B i ;; I PA.
Proof.
move => h. elim : A PA /h.
- move => p A B PA PF hPA _ hPF hPF0 _.
exists (TBind p A B). repeat split => //=.
apply rtc_refl.
hauto l:on ctrs:InterpExt.
- move => j ?. exists (Univ j).
hauto l:on ctrs:InterpExt.
- hauto lq:on ctrs:rtc.
Qed.
Lemma RPars_Pars {n} (A B : Tm n) :
rtc RPar.R A B ->
rtc Par.R A B.
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
Lemma RPars_join {n} (A B : Tm n) :
rtc RPar.R A B -> join A B.
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
Lemma bindspace_iff {n} p (PA : Tm n -> Prop) PF PF0 b :
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a, PA a -> exists PB0, PF0 a PB0) ->
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
Proof.
rewrite /BindSpace => h hPF hPF0.
case : p => /=.
- rewrite /ProdSpace.
split.
move => h1 a PB ha hPF'.
specialize hPF with (1 := ha).
specialize hPF0 with (1 := ha).
sblast.
move => ? a PB ha.
specialize hPF with (1 := ha).
specialize hPF0 with (1 := ha).
sblast.
- rewrite /SumSpace.
hauto lq:on rew:off.
Qed.
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
A i ;; I PA ->
B i ;; I PB ->
join A B ->
PA = PB.
Proof.
move => h. move : B PB. elim : A PA /h.
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
move => [B0 []].
case : B0 => //=.
+ move => p0 A0 B0 _ [hr hPi].
move /InterpExt_Bind_inv : hPi.
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
move => hjoin.
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
move => [? [h0 h1]]. subst.
have ? : PA0 = PA by hauto l:on. subst.
rewrite /ProdSpace.
extensionality b.
apply propositional_extensionality.
apply bindspace_iff; eauto.
move => a PB PB0 hPB hPB0.
apply : ihPF; eauto.
by apply join_substing.
+ move => j _.
move => [h0 h1] h.
have ? : join U (Univ j) by eauto using RPars_join.
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
move => ?. exfalso.
eauto using join_univ_pi_contra.
- move => j ? B PB /InterpExtInv.
move => [+ []]. case => //=.
+ move => p A0 B0 _ [].
move /RPars_join => *.
have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive.
exfalso.
eauto using join_univ_pi_contra.
+ move => m _ [/RPars_join h0 + h1].
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
subst.
move /InterpExt_Univ_inv. firstorder.
- move => A A0 PA h.
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
eauto using join_transitive.
Qed.