Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import fp_red. From Hammer Require Import Tactics. From Equations Require Import Equations. Require Import ssreflect ssrbool. Require Import Logic.PropExtensionality (propositional_extensionality). From stdpp Require Import relations (rtc(..), rtc_subrel). Definition ProdSpace {n} (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop := forall a PB, PA a -> PF a PB -> PB (App b a). Definition SumSpace {n} (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop := exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b). Definition BindSpace {n} p := if p is TPi then @ProdSpace n else @SumSpace n. Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). Inductive InterpExt {n} i (I : forall n, nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop := | InterpExt_Bind p A B PA PF : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ BindSpace p PA PF | InterpExt_Univ j : j < i -> ⟦ Univ j ⟧ i ;; I ↘ (I n j) | InterpExt_Step A A0 PA : RPar.R A A0 -> ⟦ A0 ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PA where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). Lemma InterpExt_Univ' {n} i I j (PF : Tm n -> Prop) : PF = I n j -> j < i -> ⟦ Univ j ⟧ i ;; I ↘ PF. Proof. hauto lq:on ctrs:InterpExt. Qed. Infix " (Tm n -> Prop) -> Prop by wf i lt := InterpUnivN n i := @InterpExt n i (fun n j A => match j exists PA, InterpUnivN n j A PA | right _ => False end). Arguments InterpUnivN {n}. Lemma InterpExt_lt_impl {n : nat} i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I n j = I' n j) -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI h. elim : A PA /h. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. Lemma InterpExt_lt_eq {n : nat} i I I' A (PA : Tm n -> Prop) : (forall j, j < i -> I n j = I' n j) -> ⟦ A ⟧ i ;; I ↘ PA = ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI. apply propositional_extensionality. have : forall j, j < i -> I' n j = I n j by sfirstorder. firstorder using InterpExt_lt_impl. Qed. Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). Lemma InterpUnivN_nolt n i : @InterpUnivN n i = @InterpExt n i (fun n j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUnivN. extensionality A. extensionality PA. set I0 := (fun _ => _). set I1 := (fun _ => _). apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n): RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b). Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed. Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P (h : ⟦ TBind p A B ⟧ i ;; I ↘ P) : exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop), ⟦ A ⟧ i ;; I ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\ P = BindSpace p PA PF. Proof. move E : (TBind p A B) h => T h. move : A B E. elim : T P / h => //. - hauto l:on. - move => A A0 PA hA hA0 hPi A1 B ?. subst. elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst. hauto lq:on ctrs:InterpExt use:RPar_substone. Qed. Lemma InterpExt_Univ_inv n i I j P (h : ⟦ @Univ n j ⟧ i ;; I ↘ P) : P = I n j /\ j < i. Proof. move : h. move E : (@Univ n j) => T h. move : j E. elim : T P /h => //. - hauto l:on. - hauto lq:on rew:off inv:RPar.R. Qed. Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) -> ⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)). Proof. move => h0 h1. apply InterpExt_Bind =>//. Qed. Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) -> ⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)). Proof. hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv. Qed. Lemma InterpExt_cumulative n i j I (A : Tm n) PA : i < j -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ j ;; I ↘ PA. Proof. move => h h0. elim : A PA /h0; hauto l:on ctrs:InterpExt use:PeanoNat.Nat.lt_trans. Qed. Lemma InterpUnivN_cumulative n i (A : Tm n) PA : ⟦ A ⟧ i ↘ PA -> forall j, i < j -> ⟦ A ⟧ j ↘ PA. Proof. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. Qed. Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) : RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. move : B. elim : A P / h; auto. - move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT. elim /RPar.inv : hT => //. move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst. apply InterpExt_Bind; auto => a PB hPB0. apply : ihPB; eauto. sfirstorder use:RPar.cong, RPar.refl. - hauto lq:on inv:RPar.R ctrs:InterpExt. - move => A B P h0 h1 ih1 C hC. have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC. hauto lq:on ctrs:InterpExt. Qed. Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed. Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on ctrs:InterpExt. Qed. Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ;; I ↘ P. Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed. Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ B ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed. Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) : rtc RPar.R A B -> ⟦ A ⟧ i ↘ P. Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed. Lemma InterpExtInv n i I (A : Tm n) PA : ⟦ A ⟧ i ;; I ↘ PA -> exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA. Proof. move => h. elim : A PA /h. - move => p A B PA PF hPA _ hPF hPF0 _. exists (TBind p A B). repeat split => //=. apply rtc_refl. hauto l:on ctrs:InterpExt. - move => j ?. exists (Univ j). hauto l:on ctrs:InterpExt. - hauto lq:on ctrs:rtc. Qed. Lemma RPars_Pars {n} (A B : Tm n) : rtc RPar.R A B -> rtc Par.R A B. Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed. Lemma RPars_join {n} (A B : Tm n) : rtc RPar.R A B -> join A B. Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed. Lemma bindspace_iff {n} p (PA : Tm n -> Prop) PF PF0 b : (forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) -> (forall a, PA a -> exists PB, PF a PB) -> (forall a, PA a -> exists PB0, PF0 a PB0) -> (BindSpace p PA PF b <-> BindSpace p PA PF0 b). Proof. rewrite /BindSpace => h hPF hPF0. case : p => /=. - rewrite /ProdSpace. split. move => h1 a PB ha hPF'. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. move => ? a PB ha. specialize hPF with (1 := ha). specialize hPF0 with (1 := ha). sblast. - rewrite /SumSpace. hauto lq:on rew:off. Qed. Lemma InterpExt_Join n i I (A B : Tm n) PA PB : ⟦ A ⟧ i ;; I ↘ PA -> ⟦ B ⟧ i ;; I ↘ PB -> join A B -> PA = PB. Proof. move => h. move : B PB. elim : A PA /h. - move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv. move => [B0 []]. case : B0 => //=. + move => p0 A0 B0 _ [hr hPi]. move /InterpExt_Bind_inv : hPi. move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst. move => hjoin. have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join. have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive. have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj. move => [? [h0 h1]]. subst. have ? : PA0 = PA by hauto l:on. subst. rewrite /ProdSpace. extensionality b. apply propositional_extensionality. apply bindspace_iff; eauto. move => a PB PB0 hPB hPB0. apply : ihPF; eauto. by apply join_substing. + move => j _. move => [h0 h1] h. have ? : join U (Univ j) by eauto using RPars_join. have : join (TBind p A B) (Univ j) by eauto using join_transitive. move => ?. exfalso. eauto using join_univ_pi_contra. - move => j ? B PB /InterpExtInv. move => [+ []]. case => //=. + move => p A0 B0 _ []. move /RPars_join => *. have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive. exfalso. eauto using join_univ_pi_contra. + move => m _ [/RPars_join h0 + h1]. have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive. subst. move /InterpExt_Univ_inv. firstorder. - move => A A0 PA h. have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once. eauto using join_transitive. Qed.