Compare commits
No commits in common. "main" and "church-boolean-sep" have entirely different histories.
main
...
church-boo
6 changed files with 1359 additions and 1010 deletions
8
Makefile
8
Makefile
|
@ -6,7 +6,7 @@ theories: $(COQMAKEFILE) FORCE
|
||||||
validate: $(COQMAKEFILE) FORCE
|
validate: $(COQMAKEFILE) FORCE
|
||||||
$(MAKE) -f $(COQMAKEFILE) validate
|
$(MAKE) -f $(COQMAKEFILE) validate
|
||||||
|
|
||||||
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
|
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
||||||
$(COQBIN)coq_makefile -f _CoqProject -o $(COQMAKEFILE)
|
$(COQBIN)coq_makefile -f _CoqProject -o $(COQMAKEFILE)
|
||||||
|
|
||||||
install: $(COQMAKEFILE)
|
install: $(COQMAKEFILE)
|
||||||
|
@ -15,13 +15,13 @@ install: $(COQMAKEFILE)
|
||||||
uninstall: $(COQMAKEFILE)
|
uninstall: $(COQMAKEFILE)
|
||||||
$(MAKE) -f $(COQMAKEFILE) uninstall
|
$(MAKE) -f $(COQMAKEFILE) uninstall
|
||||||
|
|
||||||
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v : syntax.sig
|
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
||||||
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
|
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
|
||||||
|
|
||||||
.PHONY: clean FORCE
|
.PHONY: clean FORCE
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
||||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v theories/Autosubst2/unscoped.v
|
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
||||||
|
|
||||||
FORCE:
|
FORCE:
|
||||||
|
|
419
theories/Autosubst2/fintype.v
Normal file
419
theories/Autosubst2/fintype.v
Normal file
|
@ -0,0 +1,419 @@
|
||||||
|
(** * Autosubst Header for Scoped Syntax
|
||||||
|
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
|
||||||
|
|
||||||
|
Version: December 11, 2019.
|
||||||
|
*)
|
||||||
|
Require Import core.
|
||||||
|
Require Import Setoid Morphisms Relation_Definitions.
|
||||||
|
|
||||||
|
Set Implicit Arguments.
|
||||||
|
Unset Strict Implicit.
|
||||||
|
|
||||||
|
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||||
|
match p with eq_refl => eq_refl end.
|
||||||
|
|
||||||
|
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||||
|
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||||
|
|
||||||
|
(** ** Primitives of the Sigma Calculus
|
||||||
|
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
|
||||||
|
*)
|
||||||
|
|
||||||
|
Fixpoint fin (n : nat) : Type :=
|
||||||
|
match n with
|
||||||
|
| 0 => False
|
||||||
|
| S m => option (fin m)
|
||||||
|
end.
|
||||||
|
|
||||||
|
(** Renamings and Injective Renamings
|
||||||
|
_Renamings_ are mappings between finite types.
|
||||||
|
*)
|
||||||
|
Definition ren (m n : nat) : Type := fin m -> fin n.
|
||||||
|
|
||||||
|
Definition id {X} := @Datatypes.id X.
|
||||||
|
|
||||||
|
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
|
||||||
|
|
||||||
|
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
|
||||||
|
Definition var_zero {n : nat} : fin (S n) := None.
|
||||||
|
|
||||||
|
Definition null {T} (i : fin 0) : T := match i with end.
|
||||||
|
|
||||||
|
Definition shift {n : nat} : ren n (S n) :=
|
||||||
|
Some.
|
||||||
|
|
||||||
|
(** Extension of Finite Mappings
|
||||||
|
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
|
||||||
|
*)
|
||||||
|
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
|
||||||
|
match m with
|
||||||
|
| None => x
|
||||||
|
| Some i => f i
|
||||||
|
end.
|
||||||
|
|
||||||
|
#[ export ]
|
||||||
|
Hint Opaque scons : rewrite.
|
||||||
|
|
||||||
|
(** ** Type Class Instances for Notation *)
|
||||||
|
|
||||||
|
(** *** Type classes for renamings. *)
|
||||||
|
|
||||||
|
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||||
|
ren1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||||
|
ren2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||||
|
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||||
|
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||||
|
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module RenNotations.
|
||||||
|
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||||
|
|
||||||
|
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||||
|
|
||||||
|
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||||
|
End RenNotations.
|
||||||
|
|
||||||
|
(** *** Type Classes for Substiution *)
|
||||||
|
|
||||||
|
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||||
|
subst1 : X1 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||||
|
subst2 : X1 -> X2 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||||
|
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||||
|
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||||
|
|
||||||
|
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||||
|
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||||
|
|
||||||
|
Module SubstNotations.
|
||||||
|
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||||
|
|
||||||
|
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||||
|
End SubstNotations.
|
||||||
|
|
||||||
|
(** ** Type Class for Variables *)
|
||||||
|
Class Var X Y :=
|
||||||
|
ids : X -> Y.
|
||||||
|
|
||||||
|
|
||||||
|
(** ** Proofs for substitution primitives *)
|
||||||
|
|
||||||
|
(** Forward Function Composition
|
||||||
|
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
|
||||||
|
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
|
||||||
|
|
||||||
|
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||||
|
|
||||||
|
Module CombineNotations.
|
||||||
|
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||||
|
|
||||||
|
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||||
|
|
||||||
|
#[ global ]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[ global ]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End CombineNotations.
|
||||||
|
|
||||||
|
Import CombineNotations.
|
||||||
|
|
||||||
|
|
||||||
|
(** Generic lifting operation for renamings *)
|
||||||
|
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
|
||||||
|
var_zero .: xi >> shift.
|
||||||
|
|
||||||
|
(** Generic proof that lifting of renamings composes. *)
|
||||||
|
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||||
|
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||||
|
Proof.
|
||||||
|
intros [x|].
|
||||||
|
- cbn. unfold funcomp. now rewrite <- E.
|
||||||
|
- reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Arguments up_ren_ren {k l m} xi zeta rho E.
|
||||||
|
|
||||||
|
Lemma fin_eta {X} (f g : fin 0 -> X) :
|
||||||
|
pointwise_relation _ eq f g.
|
||||||
|
Proof. intros []. Qed.
|
||||||
|
|
||||||
|
(** Eta laws *)
|
||||||
|
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
|
||||||
|
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_eta_id' {n : nat} :
|
||||||
|
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
|
||||||
|
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||||
|
Proof. intros x. destruct x; reflexivity. Qed.
|
||||||
|
|
||||||
|
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
|
||||||
|
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
|
||||||
|
(* Proof. *)
|
||||||
|
(* reflexivity. *)
|
||||||
|
(* Qed. *)
|
||||||
|
|
||||||
|
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
|
||||||
|
(* (scons s f (shift x)) = f x. *)
|
||||||
|
(* Proof. *)
|
||||||
|
(* reflexivity. *)
|
||||||
|
(* Qed. *)
|
||||||
|
|
||||||
|
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||||
|
#[export] Instance scons_morphism {X: Type} {n:nat} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
|
||||||
|
Proof.
|
||||||
|
intros t t' -> sigma tau H.
|
||||||
|
intros [x|].
|
||||||
|
cbn. apply H.
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
|
||||||
|
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
|
||||||
|
Proof.
|
||||||
|
intros ? t -> sigma tau H ? x ->.
|
||||||
|
destruct x as [x|].
|
||||||
|
cbn. apply H.
|
||||||
|
reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** ** Variadic Substitution Primitives *)
|
||||||
|
|
||||||
|
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
|
||||||
|
fun n => match p with
|
||||||
|
| 0 => n
|
||||||
|
| S p => Some (shift_p p n)
|
||||||
|
end.
|
||||||
|
|
||||||
|
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
|
||||||
|
Proof.
|
||||||
|
destruct m.
|
||||||
|
- intros n f g. exact g.
|
||||||
|
- intros n f g. cbn. apply scons.
|
||||||
|
+ exact (f var_zero).
|
||||||
|
+ apply scons_p.
|
||||||
|
* intros z. exact (f (Some z)).
|
||||||
|
* exact g.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
#[export] Hint Opaque scons_p : rewrite.
|
||||||
|
|
||||||
|
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
|
||||||
|
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
|
||||||
|
Proof.
|
||||||
|
intros sigma sigma' Hsigma tau tau' Htau.
|
||||||
|
intros x.
|
||||||
|
induction m.
|
||||||
|
- cbn. apply Htau.
|
||||||
|
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||||
|
destruct x as [x|].
|
||||||
|
+ cbn. apply IHm.
|
||||||
|
intros ?. apply Hsigma.
|
||||||
|
+ cbn. apply Hsigma.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
|
||||||
|
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
|
||||||
|
Proof.
|
||||||
|
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
|
||||||
|
induction m.
|
||||||
|
- cbn. apply Htau.
|
||||||
|
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||||
|
destruct x as [x|].
|
||||||
|
+ cbn. apply IHm.
|
||||||
|
intros ?. apply Hsigma.
|
||||||
|
+ cbn. apply Hsigma.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
|
||||||
|
Proof.
|
||||||
|
induction m.
|
||||||
|
- intros [].
|
||||||
|
- intros [x|].
|
||||||
|
+ exact (shift_p 1 (IHm x)).
|
||||||
|
+ exact var_zero.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
|
||||||
|
(scons_p f g) (zero_p z) = f z.
|
||||||
|
Proof.
|
||||||
|
induction m.
|
||||||
|
- inversion z.
|
||||||
|
- destruct z.
|
||||||
|
+ simpl. simpl. now rewrite IHm.
|
||||||
|
+ reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
|
||||||
|
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
|
||||||
|
Proof.
|
||||||
|
intros z.
|
||||||
|
unfold funcomp.
|
||||||
|
induction m.
|
||||||
|
- inversion z.
|
||||||
|
- destruct z.
|
||||||
|
+ simpl. now rewrite IHm.
|
||||||
|
+ reflexivity.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
|
||||||
|
scons_p f g (shift_p m z) = g z.
|
||||||
|
Proof. induction m; cbn; eauto. Qed.
|
||||||
|
|
||||||
|
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
|
||||||
|
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
|
||||||
|
Proof. intros z. induction m; cbn; eauto. Qed.
|
||||||
|
|
||||||
|
Lemma destruct_fin {m n} (x : fin (m + n)):
|
||||||
|
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
|
||||||
|
Proof.
|
||||||
|
induction m; simpl in *.
|
||||||
|
- right. eauto.
|
||||||
|
- destruct x as [x|].
|
||||||
|
+ destruct (IHm x) as [[x' ->] |[x' ->]].
|
||||||
|
* left. now exists (Some x').
|
||||||
|
* right. eauto.
|
||||||
|
+ left. exists None. eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
|
||||||
|
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
|
||||||
|
Proof.
|
||||||
|
intros x.
|
||||||
|
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
|
||||||
|
(* TODO better way to solve this? *)
|
||||||
|
- revert x'.
|
||||||
|
apply pointwise_forall.
|
||||||
|
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
|
||||||
|
now setoid_rewrite scons_p_head_pointwise.
|
||||||
|
- revert x'.
|
||||||
|
apply pointwise_forall.
|
||||||
|
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
|
||||||
|
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
|
||||||
|
now rewrite !scons_p_tail_pointwise.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
|
||||||
|
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
|
||||||
|
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
|
||||||
|
|
||||||
|
(** Generic n-ary lifting operation. *)
|
||||||
|
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
|
||||||
|
scons_p (zero_p ) (xi >> shift_p _).
|
||||||
|
|
||||||
|
Arguments upRen_p p {m n} xi.
|
||||||
|
|
||||||
|
(** Generic proof for composition of n-ary lifting. *)
|
||||||
|
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||||
|
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
|
||||||
|
Proof.
|
||||||
|
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
|
||||||
|
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
|
||||||
|
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
|
||||||
|
now rewrite <- E.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
Arguments zero_p m {n}.
|
||||||
|
Arguments scons_p {X} m {n} f g.
|
||||||
|
|
||||||
|
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
|
||||||
|
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
|
||||||
|
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
|
||||||
|
Proof.
|
||||||
|
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
|
||||||
|
- rewrite scons_p_head'. eauto.
|
||||||
|
- rewrite scons_p_tail'. eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Arguments scons_p_eta {X} {m n} {f g} h {z}.
|
||||||
|
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
|
||||||
|
|
||||||
|
(** ** Notations for Scoped Syntax *)
|
||||||
|
|
||||||
|
Module ScopedNotations.
|
||||||
|
Include RenNotations.
|
||||||
|
Include SubstNotations.
|
||||||
|
Include CombineNotations.
|
||||||
|
|
||||||
|
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||||
|
|
||||||
|
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||||
|
|
||||||
|
Notation "↑" := (shift) : subst_scope.
|
||||||
|
|
||||||
|
#[global]
|
||||||
|
Open Scope fscope.
|
||||||
|
#[global]
|
||||||
|
Open Scope subst_scope.
|
||||||
|
End ScopedNotations.
|
||||||
|
|
||||||
|
|
||||||
|
(** ** Tactics for Scoped Syntax *)
|
||||||
|
|
||||||
|
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||||
|
| [|- forall (i : fin 0), _] => intros []; t
|
||||||
|
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
|
||||||
|
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
|
||||||
|
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
|
||||||
|
| [|- forall (i : fin (S _)), _] => intros [?|]; t
|
||||||
|
end).
|
||||||
|
|
||||||
|
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
|
||||||
|
|
||||||
|
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||||
|
Ltac fsimpl :=
|
||||||
|
repeat match goal with
|
||||||
|
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||||
|
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||||
|
| [|- context [id ?s]] => change (id s) with s
|
||||||
|
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
|
||||||
|
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
|
||||||
|
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
|
||||||
|
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
|
||||||
|
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
|
||||||
|
| [|- context[idren >> ?f]] => change (idren >> f) with f
|
||||||
|
| [|- context[?f >> idren]] => change (f >> idren) with f
|
||||||
|
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||||
|
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
|
||||||
|
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
|
||||||
|
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||||
|
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||||
|
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||||
|
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
|
||||||
|
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||||
|
(* | _ => progress autorewrite with FunctorInstances *)
|
||||||
|
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
|
||||||
|
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
|
||||||
|
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
|
||||||
|
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
|
||||||
|
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
|
||||||
|
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
|
||||||
|
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
|
||||||
|
end.
|
File diff suppressed because it is too large
Load diff
|
@ -1,213 +0,0 @@
|
||||||
(** * Autosubst Header for Unnamed Syntax
|
|
||||||
|
|
||||||
Version: December 11, 2019.
|
|
||||||
*)
|
|
||||||
|
|
||||||
(* Adrian:
|
|
||||||
I changed this library a bit to work better with my generated code.
|
|
||||||
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
|
|
||||||
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
|
|
||||||
Require Import core.
|
|
||||||
Require Import Setoid Morphisms Relation_Definitions.
|
|
||||||
|
|
||||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
|
||||||
match p with eq_refl => eq_refl end.
|
|
||||||
|
|
||||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
|
||||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
|
||||||
|
|
||||||
(** ** Primitives of the Sigma Calculus. *)
|
|
||||||
|
|
||||||
Definition shift := S.
|
|
||||||
|
|
||||||
Definition var_zero := 0.
|
|
||||||
|
|
||||||
Definition id {X} := @Datatypes.id X.
|
|
||||||
|
|
||||||
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
|
|
||||||
fun n => match n with
|
|
||||||
| 0 => x
|
|
||||||
| S n => xi n
|
|
||||||
end.
|
|
||||||
|
|
||||||
#[ export ]
|
|
||||||
Hint Opaque scons : rewrite.
|
|
||||||
|
|
||||||
(** ** Type Class Instances for Notation
|
|
||||||
Required to make notation work. *)
|
|
||||||
|
|
||||||
(** *** Type classes for renamings. *)
|
|
||||||
|
|
||||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
|
||||||
ren1 : X1 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
|
||||||
ren2 : X1 -> X2 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
|
||||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
|
||||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
|
||||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
|
||||||
|
|
||||||
Module RenNotations.
|
|
||||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
|
||||||
|
|
||||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
|
||||||
|
|
||||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
|
||||||
End RenNotations.
|
|
||||||
|
|
||||||
(** *** Type Classes for Substiution *)
|
|
||||||
|
|
||||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
|
||||||
subst1 : X1 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
|
||||||
subst2 : X1 -> X2 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
|
||||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
|
||||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
|
||||||
|
|
||||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
|
||||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
|
||||||
|
|
||||||
Module SubstNotations.
|
|
||||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
|
||||||
|
|
||||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
|
||||||
End SubstNotations.
|
|
||||||
|
|
||||||
(** *** Type Class for Variables *)
|
|
||||||
|
|
||||||
Class Var X Y :=
|
|
||||||
ids : X -> Y.
|
|
||||||
|
|
||||||
#[export] Instance idsRen : Var nat nat := id.
|
|
||||||
|
|
||||||
(** ** Proofs for the substitution primitives. *)
|
|
||||||
|
|
||||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
|
||||||
|
|
||||||
Module CombineNotations.
|
|
||||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
|
||||||
|
|
||||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
|
||||||
|
|
||||||
#[ global ]
|
|
||||||
Open Scope fscope.
|
|
||||||
#[ global ]
|
|
||||||
Open Scope subst_scope.
|
|
||||||
End CombineNotations.
|
|
||||||
|
|
||||||
Import CombineNotations.
|
|
||||||
|
|
||||||
|
|
||||||
(** A generic lifting of a renaming. *)
|
|
||||||
Definition up_ren (xi : nat -> nat) :=
|
|
||||||
0 .: (xi >> S).
|
|
||||||
|
|
||||||
(** A generic proof that lifting of renamings composes. *)
|
|
||||||
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
|
|
||||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
|
||||||
Proof.
|
|
||||||
intros [|x].
|
|
||||||
- reflexivity.
|
|
||||||
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(** Eta laws. *)
|
|
||||||
Lemma scons_eta' {T} (f : nat -> T) :
|
|
||||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
Lemma scons_eta_id' :
|
|
||||||
pointwise_relation _ eq (var_zero .: shift) id.
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
|
|
||||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
|
||||||
Proof. intros x. destruct x; reflexivity. Qed.
|
|
||||||
|
|
||||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
|
||||||
#[export] Instance scons_morphism {X: Type} :
|
|
||||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
|
|
||||||
Proof.
|
|
||||||
intros ? t -> sigma tau H.
|
|
||||||
intros [|x].
|
|
||||||
cbn. reflexivity.
|
|
||||||
apply H.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
#[export] Instance scons_morphism2 {X: Type} :
|
|
||||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
|
|
||||||
Proof.
|
|
||||||
intros ? t -> sigma tau H ? x ->.
|
|
||||||
destruct x as [|x].
|
|
||||||
cbn. reflexivity.
|
|
||||||
apply H.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(** ** Generic lifting of an allfv predicate *)
|
|
||||||
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
|
|
||||||
|
|
||||||
(** ** Notations for unscoped syntax *)
|
|
||||||
Module UnscopedNotations.
|
|
||||||
Include RenNotations.
|
|
||||||
Include SubstNotations.
|
|
||||||
Include CombineNotations.
|
|
||||||
|
|
||||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
|
||||||
|
|
||||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
|
||||||
|
|
||||||
Notation "↑" := (shift) : subst_scope.
|
|
||||||
|
|
||||||
#[global]
|
|
||||||
Open Scope fscope.
|
|
||||||
#[global]
|
|
||||||
Open Scope subst_scope.
|
|
||||||
End UnscopedNotations.
|
|
||||||
|
|
||||||
(** ** Tactics for unscoped syntax *)
|
|
||||||
|
|
||||||
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
|
|
||||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
|
||||||
| [|- forall (i : nat), _] => intros []; t
|
|
||||||
end).
|
|
||||||
|
|
||||||
|
|
||||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
|
||||||
Ltac fsimpl :=
|
|
||||||
repeat match goal with
|
|
||||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
|
||||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
|
||||||
| [|- context [id ?s]] => change (id s) with s
|
|
||||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
|
|
||||||
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
|
|
||||||
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
|
|
||||||
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
|
|
||||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
|
||||||
| [|- context[var_zero]] => change var_zero with 0
|
|
||||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
|
|
||||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
|
|
||||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
|
||||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
|
||||||
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
|
|
||||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
|
||||||
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
|
||||||
end.
|
|
|
@ -7,7 +7,7 @@ Require Import Arith.Wf_nat.
|
||||||
Require Import Psatz.
|
Require Import Psatz.
|
||||||
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
|
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
|
||||||
From Hammer Require Import Tactics.
|
From Hammer Require Import Tactics.
|
||||||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
|
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||||||
|
|
||||||
Ltac2 spec_refl () :=
|
Ltac2 spec_refl () :=
|
||||||
List.iter
|
List.iter
|
||||||
|
@ -22,7 +22,7 @@ Ltac spec_refl := ltac2:(spec_refl ()).
|
||||||
|
|
||||||
(* Trying my best to not write C style module_funcname *)
|
(* Trying my best to not write C style module_funcname *)
|
||||||
Module Par.
|
Module Par.
|
||||||
Inductive R : PTm -> PTm -> Prop :=
|
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||||||
(***************** Beta ***********************)
|
(***************** Beta ***********************)
|
||||||
| AppAbs a0 a1 b0 b1 :
|
| AppAbs a0 a1 b0 b1 :
|
||||||
R a0 a1 ->
|
R a0 a1 ->
|
||||||
|
@ -72,35 +72,35 @@ Module Par.
|
||||||
| Bot :
|
| Bot :
|
||||||
R PBot PBot.
|
R PBot PBot.
|
||||||
|
|
||||||
Lemma refl (a : PTm) : R a a.
|
Lemma refl n (a : PTm n) : R a a.
|
||||||
elim : a; hauto ctrs:R.
|
elim : n /a; hauto ctrs:R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma AppAbs' a0 a1 (b0 b1 t : PTm) :
|
Lemma AppAbs' n a0 a1 (b0 b1 t : PTm n) :
|
||||||
t = subst_PTm (scons b1 VarPTm) a1 ->
|
t = subst_PTm (scons b1 VarPTm) a1 ->
|
||||||
R a0 a1 ->
|
R a0 a1 ->
|
||||||
R b0 b1 ->
|
R b0 b1 ->
|
||||||
R (PApp (PAbs a0) b0) t.
|
R (PApp (PAbs a0) b0) t.
|
||||||
Proof. move => ->. apply AppAbs. Qed.
|
Proof. move => ->. apply AppAbs. Qed.
|
||||||
|
|
||||||
Lemma ProjPair' p (a0 a1 b0 b1 : PTm) t :
|
Lemma ProjPair' n p (a0 a1 b0 b1 : PTm n) t :
|
||||||
t = (if p is PL then a1 else b1) ->
|
t = (if p is PL then a1 else b1) ->
|
||||||
R a0 a1 ->
|
R a0 a1 ->
|
||||||
R b0 b1 ->
|
R b0 b1 ->
|
||||||
R (PProj p (PPair a0 b0)) t.
|
R (PProj p (PPair a0 b0)) t.
|
||||||
Proof. move => > ->. apply ProjPair. Qed.
|
Proof. move => > ->. apply ProjPair. Qed.
|
||||||
|
|
||||||
Lemma AppEta' (a0 a1 b : PTm) :
|
Lemma AppEta' n (a0 a1 b : PTm n) :
|
||||||
b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) ->
|
b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) ->
|
||||||
R a0 a1 ->
|
R a0 a1 ->
|
||||||
R a0 b.
|
R a0 b.
|
||||||
Proof. move => ->; apply AppEta. Qed.
|
Proof. move => ->; apply AppEta. Qed.
|
||||||
|
|
||||||
Lemma renaming (a b : PTm) (ξ : nat -> nat) :
|
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||||||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||||||
Proof.
|
Proof.
|
||||||
move => h. move : ξ.
|
move => h. move : m ξ.
|
||||||
elim : a b /h.
|
elim : n a b /h.
|
||||||
move => *; apply : AppAbs'; eauto; by asimpl.
|
move => *; apply : AppAbs'; eauto; by asimpl.
|
||||||
all : match goal with
|
all : match goal with
|
||||||
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
|
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
|
||||||
|
@ -109,23 +109,23 @@ Module Par.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) :
|
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
|
||||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
|
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
|
||||||
Proof.
|
Proof.
|
||||||
move => + h. move : ρ0 ρ1. elim : a b/h.
|
move => + h. move : m ρ0 ρ1. elim : n a b/h.
|
||||||
- move => a0 a1 b0 b1 ha iha hb ihb ρ0 ρ1 hρ /=.
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=.
|
||||||
eapply AppAbs' with (a1 := subst_PTm (up_PTm_PTm ρ1) a1); eauto.
|
eapply AppAbs' with (a1 := subst_PTm (up_PTm_PTm ρ1) a1); eauto.
|
||||||
by asimpl.
|
by asimpl.
|
||||||
hauto l:on use:renaming inv:nat.
|
hauto l:on use:renaming inv:option.
|
||||||
- hauto lq:on rew:off ctrs:R.
|
- hauto lq:on rew:off ctrs:R.
|
||||||
- hauto l:on inv:nat use:renaming ctrs:R.
|
- hauto l:on inv:option use:renaming ctrs:R.
|
||||||
- hauto lq:on use:ProjPair'.
|
- hauto lq:on use:ProjPair'.
|
||||||
- move => a0 a1 ha iha ρ0 ρ1 hρ /=.
|
- move => n a0 a1 ha iha m ρ0 ρ1 hρ /=.
|
||||||
apply : AppEta'; eauto. by asimpl.
|
apply : AppEta'; eauto. by asimpl.
|
||||||
- hauto lq:on ctrs:R.
|
- hauto lq:on ctrs:R.
|
||||||
- sfirstorder.
|
- sfirstorder.
|
||||||
- hauto l:on inv:nat ctrs:R use:renaming.
|
- hauto l:on inv:option ctrs:R use:renaming.
|
||||||
- hauto q:on ctrs:R.
|
- hauto q:on ctrs:R.
|
||||||
- qauto l:on ctrs:R.
|
- qauto l:on ctrs:R.
|
||||||
- qauto l:on ctrs:R.
|
- qauto l:on ctrs:R.
|
||||||
|
@ -134,16 +134,16 @@ Module Par.
|
||||||
- qauto l:on ctrs:R.
|
- qauto l:on ctrs:R.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma substing (a b : PTm) (ρ : nat -> PTm) :
|
Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) :
|
||||||
R a b -> R (subst_PTm ρ a) (subst_PTm ρ b).
|
R a b -> R (subst_PTm ρ a) (subst_PTm ρ b).
|
||||||
Proof. hauto l:on use:morphing, refl. Qed.
|
Proof. hauto l:on use:morphing, refl. Qed.
|
||||||
|
|
||||||
Lemma antirenaming (a : PTm) (b : PTm) (ξ : nat -> nat) :
|
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
|
||||||
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
||||||
Proof.
|
Proof.
|
||||||
move E : (ren_PTm ξ a) => u h.
|
move E : (ren_PTm ξ a) => u h.
|
||||||
move : ξ a E. elim : u b/h.
|
move : n ξ a E. elim : m u b/h.
|
||||||
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//=.
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
|
||||||
move => c c0 [+ ?]. subst.
|
move => c c0 [+ ?]. subst.
|
||||||
case : c => //=.
|
case : c => //=.
|
||||||
move => c [?]. subst.
|
move => c [?]. subst.
|
||||||
|
@ -153,7 +153,7 @@ Module Par.
|
||||||
eexists. split.
|
eexists. split.
|
||||||
apply AppAbs; eauto.
|
apply AppAbs; eauto.
|
||||||
by asimpl.
|
by asimpl.
|
||||||
- move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc ξ []//=.
|
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
|
||||||
move => []//= t t0 t1 [*]. subst.
|
move => []//= t t0 t1 [*]. subst.
|
||||||
spec_refl.
|
spec_refl.
|
||||||
move : iha => [? [*]].
|
move : iha => [? [*]].
|
||||||
|
@ -162,43 +162,43 @@ Module Par.
|
||||||
eexists. split.
|
eexists. split.
|
||||||
apply AppPair; hauto. subst.
|
apply AppPair; hauto. subst.
|
||||||
by asimpl.
|
by asimpl.
|
||||||
- move => p a0 a1 ha iha ξ []//= p0 []//= t [*]. subst.
|
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
|
||||||
spec_refl. move : iha => [b0 [? ?]]. subst.
|
spec_refl. move : iha => [b0 [? ?]]. subst.
|
||||||
eexists. split. apply ProjAbs; eauto. by asimpl.
|
eexists. split. apply ProjAbs; eauto. by asimpl.
|
||||||
- move => p a0 a1 b0 b1 ha iha hb ihb ξ []//= p0 []//= t t0[*].
|
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
|
||||||
subst. spec_refl.
|
subst. spec_refl.
|
||||||
move : iha => [b0 [? ?]].
|
move : iha => [b0 [? ?]].
|
||||||
move : ihb => [c0 [? ?]]. subst.
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
eexists. split. by eauto using ProjPair.
|
eexists. split. by eauto using ProjPair.
|
||||||
hauto q:on.
|
hauto q:on.
|
||||||
- move => a0 a1 ha iha ξ a ?. subst.
|
- move => n a0 a1 ha iha m ξ a ?. subst.
|
||||||
spec_refl. move : iha => [a0 [? ?]]. subst.
|
spec_refl. move : iha => [a0 [? ?]]. subst.
|
||||||
eexists. split. apply AppEta; eauto.
|
eexists. split. apply AppEta; eauto.
|
||||||
by asimpl.
|
by asimpl.
|
||||||
- move => a0 a1 ha iha ξ a ?. subst.
|
- move => n a0 a1 ha iha m ξ a ?. subst.
|
||||||
spec_refl. move : iha => [b0 [? ?]]. subst.
|
spec_refl. move : iha => [b0 [? ?]]. subst.
|
||||||
eexists. split. apply PairEta; eauto.
|
eexists. split. apply PairEta; eauto.
|
||||||
by asimpl.
|
by asimpl.
|
||||||
- move => i ξ []//=.
|
- move => n i m ξ []//=.
|
||||||
hauto l:on.
|
hauto l:on.
|
||||||
- move => a0 a1 ha iha ξ []//= t [*]. subst.
|
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
|
||||||
spec_refl.
|
spec_refl.
|
||||||
move :iha => [b0 [? ?]]. subst.
|
move :iha => [b0 [? ?]]. subst.
|
||||||
eexists. split. by apply AbsCong; eauto.
|
eexists. split. by apply AbsCong; eauto.
|
||||||
done.
|
done.
|
||||||
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0 [*]. subst.
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
|
||||||
spec_refl.
|
spec_refl.
|
||||||
move : iha => [b0 [? ?]]. subst.
|
move : iha => [b0 [? ?]]. subst.
|
||||||
move : ihb => [c0 [? ?]]. subst.
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
eexists. split. by apply AppCong; eauto.
|
eexists. split. by apply AppCong; eauto.
|
||||||
done.
|
done.
|
||||||
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0[*]. subst.
|
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
|
||||||
spec_refl.
|
spec_refl.
|
||||||
move : iha => [b0 [? ?]]. subst.
|
move : iha => [b0 [? ?]]. subst.
|
||||||
move : ihb => [c0 [? ?]]. subst.
|
move : ihb => [c0 [? ?]]. subst.
|
||||||
eexists. split=>/=. by apply PairCong; eauto.
|
eexists. split=>/=. by apply PairCong; eauto.
|
||||||
done.
|
done.
|
||||||
- move => p a0 a1 ha iha ξ []//= p0 t [*]. subst.
|
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
|
||||||
spec_refl.
|
spec_refl.
|
||||||
move : iha => [b0 [? ?]]. subst.
|
move : iha => [b0 [? ?]]. subst.
|
||||||
eexists. split. by apply ProjCong; eauto.
|
eexists. split. by apply ProjCong; eauto.
|
||||||
|
@ -359,7 +359,7 @@ Module RPar.
|
||||||
R a b ->
|
R a b ->
|
||||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
||||||
Proof. hauto q:on inv:nat. Qed.
|
Proof. hauto q:on inv:option. Qed.
|
||||||
|
|
||||||
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
||||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
|
@ -399,7 +399,7 @@ Module RPar.
|
||||||
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
|
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
|
||||||
Proof.
|
Proof.
|
||||||
move => h0 h1. apply morphing => //=.
|
move => h0 h1. apply morphing => //=.
|
||||||
qauto l:on ctrs:R inv:nat.
|
qauto l:on ctrs:R inv:option.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma var_or_const_imp {n} (a b : PTm n) :
|
Lemma var_or_const_imp {n} (a b : PTm n) :
|
||||||
|
@ -595,7 +595,7 @@ Module RPar'.
|
||||||
R a b ->
|
R a b ->
|
||||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
||||||
Proof. hauto q:on inv:nat. Qed.
|
Proof. hauto q:on inv:option. Qed.
|
||||||
|
|
||||||
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
||||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||||
|
@ -633,7 +633,7 @@ Module RPar'.
|
||||||
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
|
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
|
||||||
Proof.
|
Proof.
|
||||||
move => h0 h1. apply morphing => //=.
|
move => h0 h1. apply morphing => //=.
|
||||||
qauto l:on ctrs:R inv:nat.
|
qauto l:on ctrs:R inv:option.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma var_or_const_imp {n} (a b : PTm n) :
|
Lemma var_or_const_imp {n} (a b : PTm n) :
|
||||||
|
@ -786,7 +786,7 @@ Module ERed.
|
||||||
move => h. move : m ρ. elim : n a b / h => n.
|
move => h. move : m ρ. elim : n a b / h => n.
|
||||||
move => a m ρ /=.
|
move => a m ρ /=.
|
||||||
apply : AppEta'; eauto. by asimpl.
|
apply : AppEta'; eauto. by asimpl.
|
||||||
all : hauto ctrs:R inv:nat use:renaming.
|
all : hauto ctrs:R inv:option use:renaming.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
End ERed.
|
End ERed.
|
||||||
|
@ -892,11 +892,11 @@ Module EPar.
|
||||||
apply : AppEta'; eauto. by asimpl.
|
apply : AppEta'; eauto. by asimpl.
|
||||||
- hauto lq:on ctrs:R.
|
- hauto lq:on ctrs:R.
|
||||||
- hauto lq:on ctrs:R.
|
- hauto lq:on ctrs:R.
|
||||||
- hauto l:on ctrs:R use:renaming inv:nat.
|
- hauto l:on ctrs:R use:renaming inv:option.
|
||||||
- hauto q:on ctrs:R.
|
- hauto q:on ctrs:R.
|
||||||
- hauto q:on ctrs:R.
|
- hauto q:on ctrs:R.
|
||||||
- hauto q:on ctrs:R.
|
- hauto q:on ctrs:R.
|
||||||
- hauto l:on ctrs:R use:renaming inv:nat.
|
- hauto l:on ctrs:R use:renaming inv:option.
|
||||||
- hauto lq:on ctrs:R.
|
- hauto lq:on ctrs:R.
|
||||||
- hauto lq:on ctrs:R.
|
- hauto lq:on ctrs:R.
|
||||||
Qed.
|
Qed.
|
||||||
|
@ -907,7 +907,7 @@ Module EPar.
|
||||||
R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1).
|
R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1).
|
||||||
Proof.
|
Proof.
|
||||||
move => h0 h1. apply morphing => //.
|
move => h0 h1. apply morphing => //.
|
||||||
hauto lq:on ctrs:R inv:nat.
|
hauto lq:on ctrs:R inv:option.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
End EPar.
|
End EPar.
|
||||||
|
@ -1018,7 +1018,7 @@ Module RPars.
|
||||||
Lemma substing n (a b : PTm (S n)) c :
|
Lemma substing n (a b : PTm (S n)) c :
|
||||||
rtc RPar.R a b ->
|
rtc RPar.R a b ->
|
||||||
rtc RPar.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
|
rtc RPar.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
|
||||||
Proof. hauto lq:on use:morphing inv:nat. Qed.
|
Proof. hauto lq:on use:morphing inv:option. Qed.
|
||||||
|
|
||||||
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
|
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
|
||||||
(forall i, var_or_const (ρ i)) ->
|
(forall i, var_or_const (ρ i)) ->
|
||||||
|
@ -1099,7 +1099,7 @@ Module RPars'.
|
||||||
Lemma substing n (a b : PTm (S n)) c :
|
Lemma substing n (a b : PTm (S n)) c :
|
||||||
rtc RPar'.R a b ->
|
rtc RPar'.R a b ->
|
||||||
rtc RPar'.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
|
rtc RPar'.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
|
||||||
Proof. hauto lq:on use:morphing inv:nat. Qed.
|
Proof. hauto lq:on use:morphing inv:option. Qed.
|
||||||
|
|
||||||
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
|
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
|
||||||
(forall i, var_or_const (ρ i)) ->
|
(forall i, var_or_const (ρ i)) ->
|
||||||
|
@ -2328,7 +2328,7 @@ Proof.
|
||||||
have : wn (subst_PTm (scons (PBot) VarPTm) a3) by sfirstorder.
|
have : wn (subst_PTm (scons (PBot) VarPTm) a3) by sfirstorder.
|
||||||
move => h. apply wn_abs.
|
move => h. apply wn_abs.
|
||||||
move : h. apply wn_antirenaming.
|
move : h. apply wn_antirenaming.
|
||||||
hauto lq:on rew:off inv:nat.
|
hauto lq:on rew:off inv:option.
|
||||||
+ hauto q:on inv:RPar'.R ctrs:rtc b:on.
|
+ hauto q:on inv:RPar'.R ctrs:rtc b:on.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
|
|
@ -1,251 +0,0 @@
|
||||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
|
||||||
|
|
||||||
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
|
|
||||||
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
|
|
||||||
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
|
|
||||||
Reserved Notation "⊢ Γ" (at level 70).
|
|
||||||
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
|
|
||||||
| T_Var i Γ A :
|
|
||||||
⊢ Γ ->
|
|
||||||
lookup i Γ A ->
|
|
||||||
Γ ⊢ VarPTm i ∈ A
|
|
||||||
|
|
||||||
| T_Bind Γ i p (A : PTm) (B : PTm) :
|
|
||||||
Γ ⊢ A ∈ PUniv i ->
|
|
||||||
cons A Γ ⊢ B ∈ PUniv i ->
|
|
||||||
Γ ⊢ PBind p A B ∈ PUniv i
|
|
||||||
|
|
||||||
| T_Abs Γ (a : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
|
||||||
(cons A Γ) ⊢ a ∈ B ->
|
|
||||||
Γ ⊢ PAbs a ∈ PBind PPi A B
|
|
||||||
|
|
||||||
| T_App Γ (b a : PTm) A B :
|
|
||||||
Γ ⊢ b ∈ PBind PPi A B ->
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ PApp b a ∈ subst_PTm (scons a VarPTm) B
|
|
||||||
|
|
||||||
| T_Pair Γ (a b : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
|
||||||
Γ ⊢ PPair a b ∈ PBind PSig A B
|
|
||||||
|
|
||||||
| T_Proj1 Γ (a : PTm) A B :
|
|
||||||
Γ ⊢ a ∈ PBind PSig A B ->
|
|
||||||
Γ ⊢ PProj PL a ∈ A
|
|
||||||
|
|
||||||
| T_Proj2 Γ (a : PTm) A B :
|
|
||||||
Γ ⊢ a ∈ PBind PSig A B ->
|
|
||||||
Γ ⊢ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
|
||||||
|
|
||||||
| T_Univ Γ i :
|
|
||||||
⊢ Γ ->
|
|
||||||
Γ ⊢ PUniv i ∈ PUniv (S i)
|
|
||||||
|
|
||||||
| T_Nat Γ i :
|
|
||||||
⊢ Γ ->
|
|
||||||
Γ ⊢ PNat ∈ PUniv i
|
|
||||||
|
|
||||||
| T_Zero Γ :
|
|
||||||
⊢ Γ ->
|
|
||||||
Γ ⊢ PZero ∈ PNat
|
|
||||||
|
|
||||||
| T_Suc Γ (a : PTm) :
|
|
||||||
Γ ⊢ a ∈ PNat ->
|
|
||||||
Γ ⊢ PSuc a ∈ PNat
|
|
||||||
|
|
||||||
| T_Ind Γ P (a : PTm) b c i :
|
|
||||||
cons PNat Γ ⊢ P ∈ PUniv i ->
|
|
||||||
Γ ⊢ a ∈ PNat ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
|
||||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
|
||||||
Γ ⊢ PInd P a b c ∈ subst_PTm (scons a VarPTm) P
|
|
||||||
|
|
||||||
| T_Conv Γ (a : PTm) A B :
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ A ≲ B ->
|
|
||||||
Γ ⊢ a ∈ B
|
|
||||||
|
|
||||||
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
|
|
||||||
(* Structural *)
|
|
||||||
| E_Refl Γ (a : PTm ) A :
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ a ≡ a ∈ A
|
|
||||||
|
|
||||||
| E_Symmetric Γ (a b : PTm) A :
|
|
||||||
Γ ⊢ a ≡ b ∈ A ->
|
|
||||||
Γ ⊢ b ≡ a ∈ A
|
|
||||||
|
|
||||||
| E_Transitive Γ (a b c : PTm) A :
|
|
||||||
Γ ⊢ a ≡ b ∈ A ->
|
|
||||||
Γ ⊢ b ≡ c ∈ A ->
|
|
||||||
Γ ⊢ a ≡ c ∈ A
|
|
||||||
|
|
||||||
(* Congruence *)
|
|
||||||
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
|
||||||
Γ ⊢ A0 ∈ PUniv i ->
|
|
||||||
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
|
||||||
(cons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
|
||||||
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i
|
|
||||||
|
|
||||||
| E_Abs Γ (a b : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
|
||||||
(cons A Γ) ⊢ a ≡ b ∈ B ->
|
|
||||||
Γ ⊢ PAbs a ≡ PAbs b ∈ PBind PPi A B
|
|
||||||
|
|
||||||
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
|
|
||||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
|
||||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
|
||||||
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B
|
|
||||||
|
|
||||||
| E_Pair Γ (a0 a1 b0 b1 : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
|
||||||
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
|
||||||
Γ ⊢ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B
|
|
||||||
|
|
||||||
| E_Proj1 Γ (a b : PTm) A B :
|
|
||||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
|
||||||
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A
|
|
||||||
|
|
||||||
| E_Proj2 Γ i (a b : PTm) A B :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
|
||||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
|
||||||
|
|
||||||
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
|
|
||||||
(cons PNat Γ) ⊢ P0 ∈ PUniv i ->
|
|
||||||
(cons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i ->
|
|
||||||
Γ ⊢ a0 ≡ a1 ∈ PNat ->
|
|
||||||
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
|
||||||
(cons P0 ((cons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
|
||||||
Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0
|
|
||||||
|
|
||||||
| E_SucCong Γ (a b : PTm) :
|
|
||||||
Γ ⊢ a ≡ b ∈ PNat ->
|
|
||||||
Γ ⊢ PSuc a ≡ PSuc b ∈ PNat
|
|
||||||
|
|
||||||
| E_Conv Γ (a b : PTm) A B :
|
|
||||||
Γ ⊢ a ≡ b ∈ A ->
|
|
||||||
Γ ⊢ A ≲ B ->
|
|
||||||
Γ ⊢ a ≡ b ∈ B
|
|
||||||
|
|
||||||
(* Beta *)
|
|
||||||
| E_AppAbs Γ (a : PTm) b A B i:
|
|
||||||
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
|
||||||
Γ ⊢ b ∈ A ->
|
|
||||||
(cons A Γ) ⊢ a ∈ B ->
|
|
||||||
Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B
|
|
||||||
|
|
||||||
| E_ProjPair1 Γ (a b : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
|
||||||
Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A
|
|
||||||
|
|
||||||
| E_ProjPair2 Γ (a b : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a ∈ A ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
|
||||||
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B
|
|
||||||
|
|
||||||
| E_IndZero Γ P i (b : PTm) c :
|
|
||||||
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
|
||||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
|
||||||
Γ ⊢ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P
|
|
||||||
|
|
||||||
| E_IndSuc Γ P (a : PTm) b c i :
|
|
||||||
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
|
||||||
Γ ⊢ a ∈ PNat ->
|
|
||||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
|
||||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
|
||||||
Γ ⊢ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P
|
|
||||||
|
|
||||||
(* Eta *)
|
|
||||||
| E_AppEta Γ (b : PTm) A B i :
|
|
||||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ b ∈ PBind PPi A B ->
|
|
||||||
Γ ⊢ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B
|
|
||||||
|
|
||||||
| E_PairEta Γ (a : PTm ) A B i :
|
|
||||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
|
||||||
Γ ⊢ a ∈ PBind PSig A B ->
|
|
||||||
Γ ⊢ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B
|
|
||||||
|
|
||||||
with LEq : list PTm -> PTm -> PTm -> Prop :=
|
|
||||||
(* Structural *)
|
|
||||||
| Su_Transitive Γ (A B C : PTm) :
|
|
||||||
Γ ⊢ A ≲ B ->
|
|
||||||
Γ ⊢ B ≲ C ->
|
|
||||||
Γ ⊢ A ≲ C
|
|
||||||
|
|
||||||
(* Congruence *)
|
|
||||||
| Su_Univ Γ i j :
|
|
||||||
⊢ Γ ->
|
|
||||||
i <= j ->
|
|
||||||
Γ ⊢ PUniv i ≲ PUniv j
|
|
||||||
|
|
||||||
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
|
|
||||||
Γ ⊢ A0 ∈ PUniv i ->
|
|
||||||
Γ ⊢ A1 ≲ A0 ->
|
|
||||||
(cons A0 Γ) ⊢ B0 ≲ B1 ->
|
|
||||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1
|
|
||||||
|
|
||||||
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
|
|
||||||
Γ ⊢ A1 ∈ PUniv i ->
|
|
||||||
Γ ⊢ A0 ≲ A1 ->
|
|
||||||
(cons A1 Γ) ⊢ B0 ≲ B1 ->
|
|
||||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1
|
|
||||||
|
|
||||||
(* Injecting from equalities *)
|
|
||||||
| Su_Eq Γ (A : PTm) B i :
|
|
||||||
Γ ⊢ A ≡ B ∈ PUniv i ->
|
|
||||||
Γ ⊢ A ≲ B
|
|
||||||
|
|
||||||
(* Projection axioms *)
|
|
||||||
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
|
||||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
|
||||||
Γ ⊢ A1 ≲ A0
|
|
||||||
|
|
||||||
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
|
||||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
|
||||||
Γ ⊢ A0 ≲ A1
|
|
||||||
|
|
||||||
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
|
|
||||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
|
||||||
Γ ⊢ a0 ≡ a1 ∈ A1 ->
|
|
||||||
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
|
||||||
|
|
||||||
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
|
|
||||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
|
||||||
Γ ⊢ a0 ≡ a1 ∈ A0 ->
|
|
||||||
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
|
||||||
|
|
||||||
with Wff : list PTm -> Prop :=
|
|
||||||
| Wff_Nil :
|
|
||||||
⊢ nil
|
|
||||||
| Wff_Cons Γ (A : PTm) i :
|
|
||||||
⊢ Γ ->
|
|
||||||
Γ ⊢ A ∈ PUniv i ->
|
|
||||||
(* -------------------------------- *)
|
|
||||||
⊢ (cons A Γ)
|
|
||||||
|
|
||||||
where
|
|
||||||
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
|
|
||||||
|
|
||||||
Scheme wf_ind := Induction for Wff Sort Prop
|
|
||||||
with wt_ind := Induction for Wt Sort Prop
|
|
||||||
with eq_ind := Induction for Eq Sort Prop
|
|
||||||
with le_ind := Induction for LEq Sort Prop.
|
|
||||||
|
|
||||||
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
|
|
||||||
|
|
||||||
(* Lemma lem : *)
|
|
||||||
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
|
|
||||||
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
|
|
||||||
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
|
|
||||||
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
|
|
||||||
(* Proof. apply wt_mutual. ... *)
|
|
Loading…
Add table
Add a link
Reference in a new issue