pair-eta/theories/Autosubst2/syntax.v
2025-01-24 14:52:35 -07:00

1734 lines
61 KiB
Coq

Require Import core fintype.
Require Import Setoid Morphisms Relation_Definitions.
Module Core.
Inductive PTag : Type :=
| PL : PTag
| PR : PTag.
Lemma congr_PL : PL = PL.
Proof.
exact (eq_refl).
Qed.
Lemma congr_PR : PR = PR.
Proof.
exact (eq_refl).
Qed.
Inductive TTag : Type :=
| TPi : TTag
| TSig : TTag.
Lemma congr_TPi : TPi = TPi.
Proof.
exact (eq_refl).
Qed.
Lemma congr_TSig : TSig = TSig.
Proof.
exact (eq_refl).
Qed.
Inductive PTm (n_PTm : nat) : Type :=
| VarPTm : fin n_PTm -> PTm n_PTm
| PAbs : PTm (S n_PTm) -> PTm n_PTm
| PApp : PTm n_PTm -> PTm n_PTm -> PTm n_PTm
| PPair : PTm n_PTm -> PTm n_PTm -> PTm n_PTm
| PProj : PTag -> PTm n_PTm -> PTm n_PTm
| PConst : TTag -> PTm n_PTm
| PUniv : nat -> PTm n_PTm
| PBot : PTm n_PTm.
Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)}
(H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => PAbs m_PTm x) H0)).
Qed.
Lemma congr_PApp {m_PTm : nat} {s0 : PTm m_PTm} {s1 : PTm m_PTm}
{t0 : PTm m_PTm} {t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) :
PApp m_PTm s0 s1 = PApp m_PTm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => PApp m_PTm x s1) H0))
(ap (fun x => PApp m_PTm t0 x) H1)).
Qed.
Lemma congr_PPair {m_PTm : nat} {s0 : PTm m_PTm} {s1 : PTm m_PTm}
{t0 : PTm m_PTm} {t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) :
PPair m_PTm s0 s1 = PPair m_PTm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => PPair m_PTm x s1) H0))
(ap (fun x => PPair m_PTm t0 x) H1)).
Qed.
Lemma congr_PProj {m_PTm : nat} {s0 : PTag} {s1 : PTm m_PTm} {t0 : PTag}
{t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) :
PProj m_PTm s0 s1 = PProj m_PTm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => PProj m_PTm x s1) H0))
(ap (fun x => PProj m_PTm t0 x) H1)).
Qed.
Lemma congr_PConst {m_PTm : nat} {s0 : TTag} {t0 : TTag} (H0 : s0 = t0) :
PConst m_PTm s0 = PConst m_PTm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => PConst m_PTm x) H0)).
Qed.
Lemma congr_PUniv {m_PTm : nat} {s0 : nat} {t0 : nat} (H0 : s0 = t0) :
PUniv m_PTm s0 = PUniv m_PTm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => PUniv m_PTm x) H0)).
Qed.
Lemma congr_PBot {m_PTm : nat} : PBot m_PTm = PBot m_PTm.
Proof.
exact (eq_refl).
Qed.
Lemma upRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (S m) -> fin (S n).
Proof.
exact (up_ren xi).
Defined.
Lemma upRen_list_PTm_PTm (p : nat) {m : nat} {n : nat} (xi : fin m -> fin n)
: fin (plus p m) -> fin (plus p n).
Proof.
exact (upRen_p p xi).
Defined.
Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) (s : PTm m_PTm) {struct s} : PTm n_PTm :=
match s with
| VarPTm _ s0 => VarPTm n_PTm (xi_PTm s0)
| PAbs _ s0 => PAbs n_PTm (ren_PTm (upRen_PTm_PTm xi_PTm) s0)
| PApp _ s0 s1 => PApp n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1)
| PPair _ s0 s1 => PPair n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1)
| PProj _ s0 s1 => PProj n_PTm s0 (ren_PTm xi_PTm s1)
| PConst _ s0 => PConst n_PTm s0
| PUniv _ s0 => PUniv n_PTm s0
| PBot _ => PBot n_PTm
end.
Lemma up_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) :
fin (S m) -> PTm (S n_PTm).
Proof.
exact (scons (VarPTm (S n_PTm) var_zero) (funcomp (ren_PTm shift) sigma)).
Defined.
Lemma up_list_PTm_PTm (p : nat) {m : nat} {n_PTm : nat}
(sigma : fin m -> PTm n_PTm) : fin (plus p m) -> PTm (plus p n_PTm).
Proof.
exact (scons_p p (funcomp (VarPTm (plus p n_PTm)) (zero_p p))
(funcomp (ren_PTm (shift_p p)) sigma)).
Defined.
Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm n_PTm) (s : PTm m_PTm) {struct s} : PTm n_PTm
:=
match s with
| VarPTm _ s0 => sigma_PTm s0
| PAbs _ s0 => PAbs n_PTm (subst_PTm (up_PTm_PTm sigma_PTm) s0)
| PApp _ s0 s1 =>
PApp n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1)
| PPair _ s0 s1 =>
PPair n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1)
| PProj _ s0 s1 => PProj n_PTm s0 (subst_PTm sigma_PTm s1)
| PConst _ s0 => PConst n_PTm s0
| PUniv _ s0 => PUniv n_PTm s0
| PBot _ => PBot n_PTm
end.
Lemma upId_PTm_PTm {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm)
(Eq : forall x, sigma x = VarPTm m_PTm x) :
forall x, up_PTm_PTm sigma x = VarPTm (S m_PTm) x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_PTm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upId_list_PTm_PTm {p : nat} {m_PTm : nat}
(sigma : fin m_PTm -> PTm m_PTm) (Eq : forall x, sigma x = VarPTm m_PTm x)
: forall x, up_list_PTm_PTm p sigma x = VarPTm (plus p m_PTm) x.
Proof.
exact (fun n =>
scons_p_eta (VarPTm (plus p m_PTm))
(fun n => ap (ren_PTm (shift_p p)) (Eq n)) (fun n => eq_refl)).
Qed.
Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm)
(Eq_PTm : forall x, sigma_PTm x = VarPTm m_PTm x) (s : PTm m_PTm) {struct s}
: subst_PTm sigma_PTm s = s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (idSubst_PTm sigma_PTm Eq_PTm s0)
(idSubst_PTm sigma_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (idSubst_PTm sigma_PTm Eq_PTm s0)
(idSubst_PTm sigma_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma upExtRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n)
(zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) :
forall x, upRen_PTm_PTm xi x = upRen_PTm_PTm zeta x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap shift (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upExtRen_list_PTm_PTm {p : nat} {m : nat} {n : nat}
(xi : fin m -> fin n) (zeta : fin m -> fin n)
(Eq : forall x, xi x = zeta x) :
forall x, upRen_list_PTm_PTm p xi x = upRen_list_PTm_PTm p zeta x.
Proof.
exact (fun n =>
scons_p_congr (fun n => eq_refl) (fun n => ap (shift_p p) (Eq n))).
Qed.
Fixpoint extRen_PTm {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) (zeta_PTm : fin m_PTm -> fin n_PTm)
(Eq_PTm : forall x, xi_PTm x = zeta_PTm x) (s : PTm m_PTm) {struct s} :
ren_PTm xi_PTm s = ren_PTm zeta_PTm s :=
match s with
| VarPTm _ s0 => ap (VarPTm n_PTm) (Eq_PTm s0)
| PAbs _ s0 =>
congr_PAbs
(extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm)
(upExtRen_PTm_PTm _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0)
(extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0)
(extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma upExt_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm)
(tau : fin m -> PTm n_PTm) (Eq : forall x, sigma x = tau x) :
forall x, up_PTm_PTm sigma x = up_PTm_PTm tau x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_PTm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upExt_list_PTm_PTm {p : nat} {m : nat} {n_PTm : nat}
(sigma : fin m -> PTm n_PTm) (tau : fin m -> PTm n_PTm)
(Eq : forall x, sigma x = tau x) :
forall x, up_list_PTm_PTm p sigma x = up_list_PTm_PTm p tau x.
Proof.
exact (fun n =>
scons_p_congr (fun n => eq_refl)
(fun n => ap (ren_PTm (shift_p p)) (Eq n))).
Qed.
Fixpoint ext_PTm {m_PTm : nat} {n_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm n_PTm) (tau_PTm : fin m_PTm -> PTm n_PTm)
(Eq_PTm : forall x, sigma_PTm x = tau_PTm x) (s : PTm m_PTm) {struct s} :
subst_PTm sigma_PTm s = subst_PTm tau_PTm s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm)
(upExt_PTm_PTm _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (ext_PTm sigma_PTm tau_PTm Eq_PTm s0)
(ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (ext_PTm sigma_PTm tau_PTm Eq_PTm s0)
(ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma up_ren_ren_PTm_PTm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
(zeta : fin l -> fin m) (rho : fin k -> fin m)
(Eq : forall x, funcomp zeta xi x = rho x) :
forall x,
funcomp (upRen_PTm_PTm zeta) (upRen_PTm_PTm xi) x = upRen_PTm_PTm rho x.
Proof.
exact (up_ren_ren xi zeta rho Eq).
Qed.
Lemma up_ren_ren_list_PTm_PTm {p : nat} {k : nat} {l : nat} {m : nat}
(xi : fin k -> fin l) (zeta : fin l -> fin m) (rho : fin k -> fin m)
(Eq : forall x, funcomp zeta xi x = rho x) :
forall x,
funcomp (upRen_list_PTm_PTm p zeta) (upRen_list_PTm_PTm p xi) x =
upRen_list_PTm_PTm p rho x.
Proof.
exact (up_ren_ren_p Eq).
Qed.
Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm)
(rho_PTm : fin m_PTm -> fin l_PTm)
(Eq_PTm : forall x, funcomp zeta_PTm xi_PTm x = rho_PTm x) (s : PTm m_PTm)
{struct s} : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm rho_PTm s :=
match s with
| VarPTm _ s0 => ap (VarPTm l_PTm) (Eq_PTm s0)
| PAbs _ s0 =>
congr_PAbs
(compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm)
(upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0)
(compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0)
(compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0)
(compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma up_ren_subst_PTm_PTm {k : nat} {l : nat} {m_PTm : nat}
(xi : fin k -> fin l) (tau : fin l -> PTm m_PTm)
(theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp tau xi x = theta x) :
forall x,
funcomp (up_PTm_PTm tau) (upRen_PTm_PTm xi) x = up_PTm_PTm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_PTm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma up_ren_subst_list_PTm_PTm {p : nat} {k : nat} {l : nat} {m_PTm : nat}
(xi : fin k -> fin l) (tau : fin l -> PTm m_PTm)
(theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp tau xi x = theta x) :
forall x,
funcomp (up_list_PTm_PTm p tau) (upRen_list_PTm_PTm p xi) x =
up_list_PTm_PTm p theta x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ _ n)
(scons_p_congr (fun z => scons_p_head' _ _ z)
(fun z =>
eq_trans (scons_p_tail' _ _ (xi z))
(ap (ren_PTm (shift_p p)) (Eq z))))).
Qed.
Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm)
(theta_PTm : fin m_PTm -> PTm l_PTm)
(Eq_PTm : forall x, funcomp tau_PTm xi_PTm x = theta_PTm x) (s : PTm m_PTm)
{struct s} : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm theta_PTm s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm)
(up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0)
(compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0)
(compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0)
(compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma up_subst_ren_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat}
(sigma : fin k -> PTm l_PTm) (zeta_PTm : fin l_PTm -> fin m_PTm)
(theta : fin k -> PTm m_PTm)
(Eq : forall x, funcomp (ren_PTm zeta_PTm) sigma x = theta x) :
forall x,
funcomp (ren_PTm (upRen_PTm_PTm zeta_PTm)) (up_PTm_PTm sigma) x =
up_PTm_PTm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n =>
eq_trans
(compRenRen_PTm shift (upRen_PTm_PTm zeta_PTm)
(funcomp shift zeta_PTm) (fun x => eq_refl) (sigma fin_n))
(eq_trans
(eq_sym
(compRenRen_PTm zeta_PTm shift (funcomp shift zeta_PTm)
(fun x => eq_refl) (sigma fin_n)))
(ap (ren_PTm shift) (Eq fin_n)))
| None => eq_refl
end).
Qed.
Lemma up_subst_ren_list_PTm_PTm {p : nat} {k : nat} {l_PTm : nat}
{m_PTm : nat} (sigma : fin k -> PTm l_PTm)
(zeta_PTm : fin l_PTm -> fin m_PTm) (theta : fin k -> PTm m_PTm)
(Eq : forall x, funcomp (ren_PTm zeta_PTm) sigma x = theta x) :
forall x,
funcomp (ren_PTm (upRen_list_PTm_PTm p zeta_PTm)) (up_list_PTm_PTm p sigma)
x = up_list_PTm_PTm p theta x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ _ n)
(scons_p_congr
(fun x => ap (VarPTm (plus p m_PTm)) (scons_p_head' _ _ x))
(fun n =>
eq_trans
(compRenRen_PTm (shift_p p) (upRen_list_PTm_PTm p zeta_PTm)
(funcomp (shift_p p) zeta_PTm)
(fun x => scons_p_tail' _ _ x) (sigma n))
(eq_trans
(eq_sym
(compRenRen_PTm zeta_PTm (shift_p p)
(funcomp (shift_p p) zeta_PTm) (fun x => eq_refl)
(sigma n))) (ap (ren_PTm (shift_p p)) (Eq n)))))).
Qed.
Fixpoint compSubstRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm)
(theta_PTm : fin m_PTm -> PTm l_PTm)
(Eq_PTm : forall x, funcomp (ren_PTm zeta_PTm) sigma_PTm x = theta_PTm x)
(s : PTm m_PTm) {struct s} :
ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm)
(up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0)
(compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0)
(compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0)
(compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma up_subst_subst_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat}
(sigma : fin k -> PTm l_PTm) (tau_PTm : fin l_PTm -> PTm m_PTm)
(theta : fin k -> PTm m_PTm)
(Eq : forall x, funcomp (subst_PTm tau_PTm) sigma x = theta x) :
forall x,
funcomp (subst_PTm (up_PTm_PTm tau_PTm)) (up_PTm_PTm sigma) x =
up_PTm_PTm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n =>
eq_trans
(compRenSubst_PTm shift (up_PTm_PTm tau_PTm)
(funcomp (up_PTm_PTm tau_PTm) shift) (fun x => eq_refl)
(sigma fin_n))
(eq_trans
(eq_sym
(compSubstRen_PTm tau_PTm shift
(funcomp (ren_PTm shift) tau_PTm) (fun x => eq_refl)
(sigma fin_n))) (ap (ren_PTm shift) (Eq fin_n)))
| None => eq_refl
end).
Qed.
Lemma up_subst_subst_list_PTm_PTm {p : nat} {k : nat} {l_PTm : nat}
{m_PTm : nat} (sigma : fin k -> PTm l_PTm)
(tau_PTm : fin l_PTm -> PTm m_PTm) (theta : fin k -> PTm m_PTm)
(Eq : forall x, funcomp (subst_PTm tau_PTm) sigma x = theta x) :
forall x,
funcomp (subst_PTm (up_list_PTm_PTm p tau_PTm)) (up_list_PTm_PTm p sigma) x =
up_list_PTm_PTm p theta x.
Proof.
exact (fun n =>
eq_trans
(scons_p_comp' (funcomp (VarPTm (plus p l_PTm)) (zero_p p)) _ _ n)
(scons_p_congr
(fun x => scons_p_head' _ (fun z => ren_PTm (shift_p p) _) x)
(fun n =>
eq_trans
(compRenSubst_PTm (shift_p p) (up_list_PTm_PTm p tau_PTm)
(funcomp (up_list_PTm_PTm p tau_PTm) (shift_p p))
(fun x => eq_refl) (sigma n))
(eq_trans
(eq_sym
(compSubstRen_PTm tau_PTm (shift_p p) _
(fun x => eq_sym (scons_p_tail' _ _ x)) (sigma n)))
(ap (ren_PTm (shift_p p)) (Eq n)))))).
Qed.
Fixpoint compSubstSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm)
(theta_PTm : fin m_PTm -> PTm l_PTm)
(Eq_PTm : forall x, funcomp (subst_PTm tau_PTm) sigma_PTm x = theta_PTm x)
(s : PTm m_PTm) {struct s} :
subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm)
(up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0)
(compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0)
(compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0)
(compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma renRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm)
(s : PTm m_PTm) :
ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm (funcomp zeta_PTm xi_PTm) s.
Proof.
exact (compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s).
Qed.
Lemma renRen'_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) :
pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (ren_PTm xi_PTm))
(ren_PTm (funcomp zeta_PTm xi_PTm)).
Proof.
exact (fun s => compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s).
Qed.
Lemma renSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm)
(s : PTm m_PTm) :
subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm (funcomp tau_PTm xi_PTm) s.
Proof.
exact (compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s).
Qed.
Lemma renSubst_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) :
pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (ren_PTm xi_PTm))
(subst_PTm (funcomp tau_PTm xi_PTm)).
Proof.
exact (fun s => compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s).
Qed.
Lemma substRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm)
(s : PTm m_PTm) :
ren_PTm zeta_PTm (subst_PTm sigma_PTm s) =
subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm) s.
Proof.
exact (compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s).
Qed.
Lemma substRen_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) :
pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (subst_PTm sigma_PTm))
(subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm)).
Proof.
exact (fun s => compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s).
Qed.
Lemma substSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm)
(s : PTm m_PTm) :
subst_PTm tau_PTm (subst_PTm sigma_PTm s) =
subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm) s.
Proof.
exact (compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s).
Qed.
Lemma substSubst_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) :
pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (subst_PTm sigma_PTm))
(subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm)).
Proof.
exact (fun s => compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s).
Qed.
Lemma rinstInst_up_PTm_PTm {m : nat} {n_PTm : nat} (xi : fin m -> fin n_PTm)
(sigma : fin m -> PTm n_PTm)
(Eq : forall x, funcomp (VarPTm n_PTm) xi x = sigma x) :
forall x,
funcomp (VarPTm (S n_PTm)) (upRen_PTm_PTm xi) x = up_PTm_PTm sigma x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_PTm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma rinstInst_up_list_PTm_PTm {p : nat} {m : nat} {n_PTm : nat}
(xi : fin m -> fin n_PTm) (sigma : fin m -> PTm n_PTm)
(Eq : forall x, funcomp (VarPTm n_PTm) xi x = sigma x) :
forall x,
funcomp (VarPTm (plus p n_PTm)) (upRen_list_PTm_PTm p xi) x =
up_list_PTm_PTm p sigma x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ (VarPTm (plus p n_PTm)) n)
(scons_p_congr (fun z => eq_refl)
(fun n => ap (ren_PTm (shift_p p)) (Eq n)))).
Qed.
Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) (sigma_PTm : fin m_PTm -> PTm n_PTm)
(Eq_PTm : forall x, funcomp (VarPTm n_PTm) xi_PTm x = sigma_PTm x)
(s : PTm m_PTm) {struct s} : ren_PTm xi_PTm s = subst_PTm sigma_PTm s :=
match s with
| VarPTm _ s0 => Eq_PTm s0
| PAbs _ s0 =>
congr_PAbs
(rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm)
(rinstInst_up_PTm_PTm _ _ Eq_PTm) s0)
| PApp _ s0 s1 =>
congr_PApp (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0)
(rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
| PPair _ s0 s1 =>
congr_PPair (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0)
(rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
| PProj _ s0 s1 =>
congr_PProj (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
| PConst _ s0 => congr_PConst (eq_refl s0)
| PUniv _ s0 => congr_PUniv (eq_refl s0)
| PBot _ => congr_PBot
end.
Lemma rinstInst'_PTm {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) (s : PTm m_PTm) :
ren_PTm xi_PTm s = subst_PTm (funcomp (VarPTm n_PTm) xi_PTm) s.
Proof.
exact (rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s).
Qed.
Lemma rinstInst'_PTm_pointwise {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) :
pointwise_relation _ eq (ren_PTm xi_PTm)
(subst_PTm (funcomp (VarPTm n_PTm) xi_PTm)).
Proof.
exact (fun s => rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s).
Qed.
Lemma instId'_PTm {m_PTm : nat} (s : PTm m_PTm) :
subst_PTm (VarPTm m_PTm) s = s.
Proof.
exact (idSubst_PTm (VarPTm m_PTm) (fun n => eq_refl) s).
Qed.
Lemma instId'_PTm_pointwise {m_PTm : nat} :
pointwise_relation _ eq (subst_PTm (VarPTm m_PTm)) id.
Proof.
exact (fun s => idSubst_PTm (VarPTm m_PTm) (fun n => eq_refl) s).
Qed.
Lemma rinstId'_PTm {m_PTm : nat} (s : PTm m_PTm) : ren_PTm id s = s.
Proof.
exact (eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)).
Qed.
Lemma rinstId'_PTm_pointwise {m_PTm : nat} :
pointwise_relation _ eq (@ren_PTm m_PTm m_PTm id) id.
Proof.
exact (fun s =>
eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)).
Qed.
Lemma varL'_PTm {m_PTm : nat} {n_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm n_PTm) (x : fin m_PTm) :
subst_PTm sigma_PTm (VarPTm m_PTm x) = sigma_PTm x.
Proof.
exact (eq_refl).
Qed.
Lemma varL'_PTm_pointwise {m_PTm : nat} {n_PTm : nat}
(sigma_PTm : fin m_PTm -> PTm n_PTm) :
pointwise_relation _ eq (funcomp (subst_PTm sigma_PTm) (VarPTm m_PTm))
sigma_PTm.
Proof.
exact (fun x => eq_refl).
Qed.
Lemma varLRen'_PTm {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) (x : fin m_PTm) :
ren_PTm xi_PTm (VarPTm m_PTm x) = VarPTm n_PTm (xi_PTm x).
Proof.
exact (eq_refl).
Qed.
Lemma varLRen'_PTm_pointwise {m_PTm : nat} {n_PTm : nat}
(xi_PTm : fin m_PTm -> fin n_PTm) :
pointwise_relation _ eq (funcomp (ren_PTm xi_PTm) (VarPTm m_PTm))
(funcomp (VarPTm n_PTm) xi_PTm).
Proof.
exact (fun x => eq_refl).
Qed.
Inductive Tm (n_Tm : nat) : Type :=
| VarTm : fin n_Tm -> Tm n_Tm
| Abs : Tm (S n_Tm) -> Tm n_Tm
| App : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Pair : Tm n_Tm -> Tm n_Tm -> Tm n_Tm
| Proj : PTag -> Tm n_Tm -> Tm n_Tm
| TBind : TTag -> Tm n_Tm -> Tm (S n_Tm) -> Tm n_Tm
| Univ : nat -> Tm n_Tm
| BVal : bool -> Tm n_Tm
| Bool : Tm n_Tm
| If : Tm n_Tm -> Tm n_Tm -> Tm n_Tm -> Tm n_Tm.
Lemma congr_Abs {m_Tm : nat} {s0 : Tm (S m_Tm)} {t0 : Tm (S m_Tm)}
(H0 : s0 = t0) : Abs m_Tm s0 = Abs m_Tm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => Abs m_Tm x) H0)).
Qed.
Lemma congr_App {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {t0 : Tm m_Tm}
{t1 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) :
App m_Tm s0 s1 = App m_Tm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => App m_Tm x s1) H0))
(ap (fun x => App m_Tm t0 x) H1)).
Qed.
Lemma congr_Pair {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {t0 : Tm m_Tm}
{t1 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) :
Pair m_Tm s0 s1 = Pair m_Tm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => Pair m_Tm x s1) H0))
(ap (fun x => Pair m_Tm t0 x) H1)).
Qed.
Lemma congr_Proj {m_Tm : nat} {s0 : PTag} {s1 : Tm m_Tm} {t0 : PTag}
{t1 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1) :
Proj m_Tm s0 s1 = Proj m_Tm t0 t1.
Proof.
exact (eq_trans (eq_trans eq_refl (ap (fun x => Proj m_Tm x s1) H0))
(ap (fun x => Proj m_Tm t0 x) H1)).
Qed.
Lemma congr_TBind {m_Tm : nat} {s0 : TTag} {s1 : Tm m_Tm} {s2 : Tm (S m_Tm)}
{t0 : TTag} {t1 : Tm m_Tm} {t2 : Tm (S m_Tm)} (H0 : s0 = t0) (H1 : s1 = t1)
(H2 : s2 = t2) : TBind m_Tm s0 s1 s2 = TBind m_Tm t0 t1 t2.
Proof.
exact (eq_trans
(eq_trans (eq_trans eq_refl (ap (fun x => TBind m_Tm x s1 s2) H0))
(ap (fun x => TBind m_Tm t0 x s2) H1))
(ap (fun x => TBind m_Tm t0 t1 x) H2)).
Qed.
Lemma congr_Univ {m_Tm : nat} {s0 : nat} {t0 : nat} (H0 : s0 = t0) :
Univ m_Tm s0 = Univ m_Tm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => Univ m_Tm x) H0)).
Qed.
Lemma congr_BVal {m_Tm : nat} {s0 : bool} {t0 : bool} (H0 : s0 = t0) :
BVal m_Tm s0 = BVal m_Tm t0.
Proof.
exact (eq_trans eq_refl (ap (fun x => BVal m_Tm x) H0)).
Qed.
Lemma congr_Bool {m_Tm : nat} : Bool m_Tm = Bool m_Tm.
Proof.
exact (eq_refl).
Qed.
Lemma congr_If {m_Tm : nat} {s0 : Tm m_Tm} {s1 : Tm m_Tm} {s2 : Tm m_Tm}
{t0 : Tm m_Tm} {t1 : Tm m_Tm} {t2 : Tm m_Tm} (H0 : s0 = t0) (H1 : s1 = t1)
(H2 : s2 = t2) : If m_Tm s0 s1 s2 = If m_Tm t0 t1 t2.
Proof.
exact (eq_trans
(eq_trans (eq_trans eq_refl (ap (fun x => If m_Tm x s1 s2) H0))
(ap (fun x => If m_Tm t0 x s2) H1))
(ap (fun x => If m_Tm t0 t1 x) H2)).
Qed.
Lemma upRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (S m) -> fin (S n).
Proof.
exact (up_ren xi).
Defined.
Lemma upRen_list_Tm_Tm (p : nat) {m : nat} {n : nat} (xi : fin m -> fin n) :
fin (plus p m) -> fin (plus p n).
Proof.
exact (upRen_p p xi).
Defined.
Fixpoint ren_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
(s : Tm m_Tm) {struct s} : Tm n_Tm :=
match s with
| VarTm _ s0 => VarTm n_Tm (xi_Tm s0)
| Abs _ s0 => Abs n_Tm (ren_Tm (upRen_Tm_Tm xi_Tm) s0)
| App _ s0 s1 => App n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
| Pair _ s0 s1 => Pair n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1)
| Proj _ s0 s1 => Proj n_Tm s0 (ren_Tm xi_Tm s1)
| TBind _ s0 s1 s2 =>
TBind n_Tm s0 (ren_Tm xi_Tm s1) (ren_Tm (upRen_Tm_Tm xi_Tm) s2)
| Univ _ s0 => Univ n_Tm s0
| BVal _ s0 => BVal n_Tm s0
| Bool _ => Bool n_Tm
| If _ s0 s1 s2 =>
If n_Tm (ren_Tm xi_Tm s0) (ren_Tm xi_Tm s1) (ren_Tm xi_Tm s2)
end.
Lemma up_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm) :
fin (S m) -> Tm (S n_Tm).
Proof.
exact (scons (VarTm (S n_Tm) var_zero) (funcomp (ren_Tm shift) sigma)).
Defined.
Lemma up_list_Tm_Tm (p : nat) {m : nat} {n_Tm : nat}
(sigma : fin m -> Tm n_Tm) : fin (plus p m) -> Tm (plus p n_Tm).
Proof.
exact (scons_p p (funcomp (VarTm (plus p n_Tm)) (zero_p p))
(funcomp (ren_Tm (shift_p p)) sigma)).
Defined.
Fixpoint subst_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
(s : Tm m_Tm) {struct s} : Tm n_Tm :=
match s with
| VarTm _ s0 => sigma_Tm s0
| Abs _ s0 => Abs n_Tm (subst_Tm (up_Tm_Tm sigma_Tm) s0)
| App _ s0 s1 => App n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
| Pair _ s0 s1 => Pair n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
| Proj _ s0 s1 => Proj n_Tm s0 (subst_Tm sigma_Tm s1)
| TBind _ s0 s1 s2 =>
TBind n_Tm s0 (subst_Tm sigma_Tm s1) (subst_Tm (up_Tm_Tm sigma_Tm) s2)
| Univ _ s0 => Univ n_Tm s0
| BVal _ s0 => BVal n_Tm s0
| Bool _ => Bool n_Tm
| If _ s0 s1 s2 =>
If n_Tm (subst_Tm sigma_Tm s0) (subst_Tm sigma_Tm s1)
(subst_Tm sigma_Tm s2)
end.
Lemma upId_Tm_Tm {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
(Eq : forall x, sigma x = VarTm m_Tm x) :
forall x, up_Tm_Tm sigma x = VarTm (S m_Tm) x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upId_list_Tm_Tm {p : nat} {m_Tm : nat} (sigma : fin m_Tm -> Tm m_Tm)
(Eq : forall x, sigma x = VarTm m_Tm x) :
forall x, up_list_Tm_Tm p sigma x = VarTm (plus p m_Tm) x.
Proof.
exact (fun n =>
scons_p_eta (VarTm (plus p m_Tm))
(fun n => ap (ren_Tm (shift_p p)) (Eq n)) (fun n => eq_refl)).
Qed.
Fixpoint idSubst_Tm {m_Tm : nat} (sigma_Tm : fin m_Tm -> Tm m_Tm)
(Eq_Tm : forall x, sigma_Tm x = VarTm m_Tm x) (s : Tm m_Tm) {struct s} :
subst_Tm sigma_Tm s = s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs (idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (idSubst_Tm sigma_Tm Eq_Tm s0)
(idSubst_Tm sigma_Tm Eq_Tm s1)
| Proj _ s0 s1 => congr_Proj (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
(idSubst_Tm (up_Tm_Tm sigma_Tm) (upId_Tm_Tm _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (idSubst_Tm sigma_Tm Eq_Tm s0) (idSubst_Tm sigma_Tm Eq_Tm s1)
(idSubst_Tm sigma_Tm Eq_Tm s2)
end.
Lemma upExtRen_Tm_Tm {m : nat} {n : nat} (xi : fin m -> fin n)
(zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) :
forall x, upRen_Tm_Tm xi x = upRen_Tm_Tm zeta x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap shift (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upExtRen_list_Tm_Tm {p : nat} {m : nat} {n : nat} (xi : fin m -> fin n)
(zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) :
forall x, upRen_list_Tm_Tm p xi x = upRen_list_Tm_Tm p zeta x.
Proof.
exact (fun n =>
scons_p_congr (fun n => eq_refl) (fun n => ap (shift_p p) (Eq n))).
Qed.
Fixpoint extRen_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
(zeta_Tm : fin m_Tm -> fin n_Tm) (Eq_Tm : forall x, xi_Tm x = zeta_Tm x)
(s : Tm m_Tm) {struct s} : ren_Tm xi_Tm s = ren_Tm zeta_Tm s :=
match s with
| VarTm _ s0 => ap (VarTm n_Tm) (Eq_Tm s0)
| Abs _ s0 =>
congr_Abs
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upExtRen_Tm_Tm _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s1)
(extRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upExtRen_Tm_Tm _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (extRen_Tm xi_Tm zeta_Tm Eq_Tm s0)
(extRen_Tm xi_Tm zeta_Tm Eq_Tm s1) (extRen_Tm xi_Tm zeta_Tm Eq_Tm s2)
end.
Lemma upExt_Tm_Tm {m : nat} {n_Tm : nat} (sigma : fin m -> Tm n_Tm)
(tau : fin m -> Tm n_Tm) (Eq : forall x, sigma x = tau x) :
forall x, up_Tm_Tm sigma x = up_Tm_Tm tau x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma upExt_list_Tm_Tm {p : nat} {m : nat} {n_Tm : nat}
(sigma : fin m -> Tm n_Tm) (tau : fin m -> Tm n_Tm)
(Eq : forall x, sigma x = tau x) :
forall x, up_list_Tm_Tm p sigma x = up_list_Tm_Tm p tau x.
Proof.
exact (fun n =>
scons_p_congr (fun n => eq_refl)
(fun n => ap (ren_Tm (shift_p p)) (Eq n))).
Qed.
Fixpoint ext_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
(tau_Tm : fin m_Tm -> Tm n_Tm) (Eq_Tm : forall x, sigma_Tm x = tau_Tm x)
(s : Tm m_Tm) {struct s} : subst_Tm sigma_Tm s = subst_Tm tau_Tm s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
s0)
| App _ s0 s1 =>
congr_App (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
| Proj _ s0 s1 => congr_Proj (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0) (ext_Tm sigma_Tm tau_Tm Eq_Tm s1)
(ext_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm) (upExt_Tm_Tm _ _ Eq_Tm)
s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (ext_Tm sigma_Tm tau_Tm Eq_Tm s0)
(ext_Tm sigma_Tm tau_Tm Eq_Tm s1) (ext_Tm sigma_Tm tau_Tm Eq_Tm s2)
end.
Lemma up_ren_ren_Tm_Tm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
(zeta : fin l -> fin m) (rho : fin k -> fin m)
(Eq : forall x, funcomp zeta xi x = rho x) :
forall x, funcomp (upRen_Tm_Tm zeta) (upRen_Tm_Tm xi) x = upRen_Tm_Tm rho x.
Proof.
exact (up_ren_ren xi zeta rho Eq).
Qed.
Lemma up_ren_ren_list_Tm_Tm {p : nat} {k : nat} {l : nat} {m : nat}
(xi : fin k -> fin l) (zeta : fin l -> fin m) (rho : fin k -> fin m)
(Eq : forall x, funcomp zeta xi x = rho x) :
forall x,
funcomp (upRen_list_Tm_Tm p zeta) (upRen_list_Tm_Tm p xi) x =
upRen_list_Tm_Tm p rho x.
Proof.
exact (up_ren_ren_p Eq).
Qed.
Fixpoint compRenRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
(rho_Tm : fin m_Tm -> fin l_Tm)
(Eq_Tm : forall x, funcomp zeta_Tm xi_Tm x = rho_Tm x) (s : Tm m_Tm) {struct
s} : ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm rho_Tm s :=
match s with
| VarTm _ s0 => ap (VarTm l_Tm) (Eq_Tm s0)
| Abs _ s0 =>
congr_Abs
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0) (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
(compRenRen_Tm (upRen_Tm_Tm xi_Tm) (upRen_Tm_Tm zeta_Tm)
(upRen_Tm_Tm rho_Tm) (up_ren_ren _ _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s0)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s1)
(compRenRen_Tm xi_Tm zeta_Tm rho_Tm Eq_Tm s2)
end.
Lemma up_ren_subst_Tm_Tm {k : nat} {l : nat} {m_Tm : nat}
(xi : fin k -> fin l) (tau : fin l -> Tm m_Tm) (theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp tau xi x = theta x) :
forall x, funcomp (up_Tm_Tm tau) (upRen_Tm_Tm xi) x = up_Tm_Tm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma up_ren_subst_list_Tm_Tm {p : nat} {k : nat} {l : nat} {m_Tm : nat}
(xi : fin k -> fin l) (tau : fin l -> Tm m_Tm) (theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp tau xi x = theta x) :
forall x,
funcomp (up_list_Tm_Tm p tau) (upRen_list_Tm_Tm p xi) x =
up_list_Tm_Tm p theta x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ _ n)
(scons_p_congr (fun z => scons_p_head' _ _ z)
(fun z =>
eq_trans (scons_p_tail' _ _ (xi z))
(ap (ren_Tm (shift_p p)) (Eq z))))).
Qed.
Fixpoint compRenSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
(theta_Tm : fin m_Tm -> Tm l_Tm)
(Eq_Tm : forall x, funcomp tau_Tm xi_Tm x = theta_Tm x) (s : Tm m_Tm) {struct
s} : subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm theta_Tm s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
(compRenSubst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_ren_subst_Tm_Tm _ _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s0)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s1)
(compRenSubst_Tm xi_Tm tau_Tm theta_Tm Eq_Tm s2)
end.
Lemma up_subst_ren_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
(sigma : fin k -> Tm l_Tm) (zeta_Tm : fin l_Tm -> fin m_Tm)
(theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp (ren_Tm zeta_Tm) sigma x = theta x) :
forall x,
funcomp (ren_Tm (upRen_Tm_Tm zeta_Tm)) (up_Tm_Tm sigma) x =
up_Tm_Tm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n =>
eq_trans
(compRenRen_Tm shift (upRen_Tm_Tm zeta_Tm)
(funcomp shift zeta_Tm) (fun x => eq_refl) (sigma fin_n))
(eq_trans
(eq_sym
(compRenRen_Tm zeta_Tm shift (funcomp shift zeta_Tm)
(fun x => eq_refl) (sigma fin_n)))
(ap (ren_Tm shift) (Eq fin_n)))
| None => eq_refl
end).
Qed.
Lemma up_subst_ren_list_Tm_Tm {p : nat} {k : nat} {l_Tm : nat} {m_Tm : nat}
(sigma : fin k -> Tm l_Tm) (zeta_Tm : fin l_Tm -> fin m_Tm)
(theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp (ren_Tm zeta_Tm) sigma x = theta x) :
forall x,
funcomp (ren_Tm (upRen_list_Tm_Tm p zeta_Tm)) (up_list_Tm_Tm p sigma) x =
up_list_Tm_Tm p theta x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ _ n)
(scons_p_congr
(fun x => ap (VarTm (plus p m_Tm)) (scons_p_head' _ _ x))
(fun n =>
eq_trans
(compRenRen_Tm (shift_p p) (upRen_list_Tm_Tm p zeta_Tm)
(funcomp (shift_p p) zeta_Tm)
(fun x => scons_p_tail' _ _ x) (sigma n))
(eq_trans
(eq_sym
(compRenRen_Tm zeta_Tm (shift_p p)
(funcomp (shift_p p) zeta_Tm) (fun x => eq_refl)
(sigma n))) (ap (ren_Tm (shift_p p)) (Eq n)))))).
Qed.
Fixpoint compSubstRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
(theta_Tm : fin m_Tm -> Tm l_Tm)
(Eq_Tm : forall x, funcomp (ren_Tm zeta_Tm) sigma_Tm x = theta_Tm x)
(s : Tm m_Tm) {struct s} :
ren_Tm zeta_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
(compSubstRen_Tm (up_Tm_Tm sigma_Tm) (upRen_Tm_Tm zeta_Tm)
(up_Tm_Tm theta_Tm) (up_subst_ren_Tm_Tm _ _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s0)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s1)
(compSubstRen_Tm sigma_Tm zeta_Tm theta_Tm Eq_Tm s2)
end.
Lemma up_subst_subst_Tm_Tm {k : nat} {l_Tm : nat} {m_Tm : nat}
(sigma : fin k -> Tm l_Tm) (tau_Tm : fin l_Tm -> Tm m_Tm)
(theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp (subst_Tm tau_Tm) sigma x = theta x) :
forall x,
funcomp (subst_Tm (up_Tm_Tm tau_Tm)) (up_Tm_Tm sigma) x = up_Tm_Tm theta x.
Proof.
exact (fun n =>
match n with
| Some fin_n =>
eq_trans
(compRenSubst_Tm shift (up_Tm_Tm tau_Tm)
(funcomp (up_Tm_Tm tau_Tm) shift) (fun x => eq_refl)
(sigma fin_n))
(eq_trans
(eq_sym
(compSubstRen_Tm tau_Tm shift
(funcomp (ren_Tm shift) tau_Tm) (fun x => eq_refl)
(sigma fin_n))) (ap (ren_Tm shift) (Eq fin_n)))
| None => eq_refl
end).
Qed.
Lemma up_subst_subst_list_Tm_Tm {p : nat} {k : nat} {l_Tm : nat} {m_Tm : nat}
(sigma : fin k -> Tm l_Tm) (tau_Tm : fin l_Tm -> Tm m_Tm)
(theta : fin k -> Tm m_Tm)
(Eq : forall x, funcomp (subst_Tm tau_Tm) sigma x = theta x) :
forall x,
funcomp (subst_Tm (up_list_Tm_Tm p tau_Tm)) (up_list_Tm_Tm p sigma) x =
up_list_Tm_Tm p theta x.
Proof.
exact (fun n =>
eq_trans
(scons_p_comp' (funcomp (VarTm (plus p l_Tm)) (zero_p p)) _ _ n)
(scons_p_congr
(fun x => scons_p_head' _ (fun z => ren_Tm (shift_p p) _) x)
(fun n =>
eq_trans
(compRenSubst_Tm (shift_p p) (up_list_Tm_Tm p tau_Tm)
(funcomp (up_list_Tm_Tm p tau_Tm) (shift_p p))
(fun x => eq_refl) (sigma n))
(eq_trans
(eq_sym
(compSubstRen_Tm tau_Tm (shift_p p) _
(fun x => eq_sym (scons_p_tail' _ _ x)) (sigma n)))
(ap (ren_Tm (shift_p p)) (Eq n)))))).
Qed.
Fixpoint compSubstSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
(theta_Tm : fin m_Tm -> Tm l_Tm)
(Eq_Tm : forall x, funcomp (subst_Tm tau_Tm) sigma_Tm x = theta_Tm x)
(s : Tm m_Tm) {struct s} :
subst_Tm tau_Tm (subst_Tm sigma_Tm s) = subst_Tm theta_Tm s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
(compSubstSubst_Tm (up_Tm_Tm sigma_Tm) (up_Tm_Tm tau_Tm)
(up_Tm_Tm theta_Tm) (up_subst_subst_Tm_Tm _ _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s0)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s1)
(compSubstSubst_Tm sigma_Tm tau_Tm theta_Tm Eq_Tm s2)
end.
Lemma renRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
(s : Tm m_Tm) :
ren_Tm zeta_Tm (ren_Tm xi_Tm s) = ren_Tm (funcomp zeta_Tm xi_Tm) s.
Proof.
exact (compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s).
Qed.
Lemma renRen'_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm) :
pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (ren_Tm xi_Tm))
(ren_Tm (funcomp zeta_Tm xi_Tm)).
Proof.
exact (fun s => compRenRen_Tm xi_Tm zeta_Tm _ (fun n => eq_refl) s).
Qed.
Lemma renSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) (s : Tm m_Tm)
: subst_Tm tau_Tm (ren_Tm xi_Tm s) = subst_Tm (funcomp tau_Tm xi_Tm) s.
Proof.
exact (compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s).
Qed.
Lemma renSubst_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(xi_Tm : fin m_Tm -> fin k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) :
pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (ren_Tm xi_Tm))
(subst_Tm (funcomp tau_Tm xi_Tm)).
Proof.
exact (fun s => compRenSubst_Tm xi_Tm tau_Tm _ (fun n => eq_refl) s).
Qed.
Lemma substRen_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm)
(s : Tm m_Tm) :
ren_Tm zeta_Tm (subst_Tm sigma_Tm s) =
subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm) s.
Proof.
exact (compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s).
Qed.
Lemma substRen_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (zeta_Tm : fin k_Tm -> fin l_Tm) :
pointwise_relation _ eq (funcomp (ren_Tm zeta_Tm) (subst_Tm sigma_Tm))
(subst_Tm (funcomp (ren_Tm zeta_Tm) sigma_Tm)).
Proof.
exact (fun s => compSubstRen_Tm sigma_Tm zeta_Tm _ (fun n => eq_refl) s).
Qed.
Lemma substSubst_Tm {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm)
(s : Tm m_Tm) :
subst_Tm tau_Tm (subst_Tm sigma_Tm s) =
subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm) s.
Proof.
exact (compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s).
Qed.
Lemma substSubst_Tm_pointwise {k_Tm : nat} {l_Tm : nat} {m_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm k_Tm) (tau_Tm : fin k_Tm -> Tm l_Tm) :
pointwise_relation _ eq (funcomp (subst_Tm tau_Tm) (subst_Tm sigma_Tm))
(subst_Tm (funcomp (subst_Tm tau_Tm) sigma_Tm)).
Proof.
exact (fun s => compSubstSubst_Tm sigma_Tm tau_Tm _ (fun n => eq_refl) s).
Qed.
Lemma rinstInst_up_Tm_Tm {m : nat} {n_Tm : nat} (xi : fin m -> fin n_Tm)
(sigma : fin m -> Tm n_Tm)
(Eq : forall x, funcomp (VarTm n_Tm) xi x = sigma x) :
forall x, funcomp (VarTm (S n_Tm)) (upRen_Tm_Tm xi) x = up_Tm_Tm sigma x.
Proof.
exact (fun n =>
match n with
| Some fin_n => ap (ren_Tm shift) (Eq fin_n)
| None => eq_refl
end).
Qed.
Lemma rinstInst_up_list_Tm_Tm {p : nat} {m : nat} {n_Tm : nat}
(xi : fin m -> fin n_Tm) (sigma : fin m -> Tm n_Tm)
(Eq : forall x, funcomp (VarTm n_Tm) xi x = sigma x) :
forall x,
funcomp (VarTm (plus p n_Tm)) (upRen_list_Tm_Tm p xi) x =
up_list_Tm_Tm p sigma x.
Proof.
exact (fun n =>
eq_trans (scons_p_comp' _ _ (VarTm (plus p n_Tm)) n)
(scons_p_congr (fun z => eq_refl)
(fun n => ap (ren_Tm (shift_p p)) (Eq n)))).
Qed.
Fixpoint rinst_inst_Tm {m_Tm : nat} {n_Tm : nat}
(xi_Tm : fin m_Tm -> fin n_Tm) (sigma_Tm : fin m_Tm -> Tm n_Tm)
(Eq_Tm : forall x, funcomp (VarTm n_Tm) xi_Tm x = sigma_Tm x) (s : Tm m_Tm)
{struct s} : ren_Tm xi_Tm s = subst_Tm sigma_Tm s :=
match s with
| VarTm _ s0 => Eq_Tm s0
| Abs _ s0 =>
congr_Abs
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s0)
| App _ s0 s1 =>
congr_App (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
| Pair _ s0 s1 =>
congr_Pair (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
| Proj _ s0 s1 =>
congr_Proj (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
| TBind _ s0 s1 s2 =>
congr_TBind (eq_refl s0) (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
(rinst_inst_Tm (upRen_Tm_Tm xi_Tm) (up_Tm_Tm sigma_Tm)
(rinstInst_up_Tm_Tm _ _ Eq_Tm) s2)
| Univ _ s0 => congr_Univ (eq_refl s0)
| BVal _ s0 => congr_BVal (eq_refl s0)
| Bool _ => congr_Bool
| If _ s0 s1 s2 =>
congr_If (rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s0)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s1)
(rinst_inst_Tm xi_Tm sigma_Tm Eq_Tm s2)
end.
Lemma rinstInst'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
(s : Tm m_Tm) : ren_Tm xi_Tm s = subst_Tm (funcomp (VarTm n_Tm) xi_Tm) s.
Proof.
exact (rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s).
Qed.
Lemma rinstInst'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
(xi_Tm : fin m_Tm -> fin n_Tm) :
pointwise_relation _ eq (ren_Tm xi_Tm)
(subst_Tm (funcomp (VarTm n_Tm) xi_Tm)).
Proof.
exact (fun s => rinst_inst_Tm xi_Tm _ (fun n => eq_refl) s).
Qed.
Lemma instId'_Tm {m_Tm : nat} (s : Tm m_Tm) : subst_Tm (VarTm m_Tm) s = s.
Proof.
exact (idSubst_Tm (VarTm m_Tm) (fun n => eq_refl) s).
Qed.
Lemma instId'_Tm_pointwise {m_Tm : nat} :
pointwise_relation _ eq (subst_Tm (VarTm m_Tm)) id.
Proof.
exact (fun s => idSubst_Tm (VarTm m_Tm) (fun n => eq_refl) s).
Qed.
Lemma rinstId'_Tm {m_Tm : nat} (s : Tm m_Tm) : ren_Tm id s = s.
Proof.
exact (eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)).
Qed.
Lemma rinstId'_Tm_pointwise {m_Tm : nat} :
pointwise_relation _ eq (@ren_Tm m_Tm m_Tm id) id.
Proof.
exact (fun s => eq_ind_r (fun t => t = s) (instId'_Tm s) (rinstInst'_Tm id s)).
Qed.
Lemma varL'_Tm {m_Tm : nat} {n_Tm : nat} (sigma_Tm : fin m_Tm -> Tm n_Tm)
(x : fin m_Tm) : subst_Tm sigma_Tm (VarTm m_Tm x) = sigma_Tm x.
Proof.
exact (eq_refl).
Qed.
Lemma varL'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
(sigma_Tm : fin m_Tm -> Tm n_Tm) :
pointwise_relation _ eq (funcomp (subst_Tm sigma_Tm) (VarTm m_Tm)) sigma_Tm.
Proof.
exact (fun x => eq_refl).
Qed.
Lemma varLRen'_Tm {m_Tm : nat} {n_Tm : nat} (xi_Tm : fin m_Tm -> fin n_Tm)
(x : fin m_Tm) : ren_Tm xi_Tm (VarTm m_Tm x) = VarTm n_Tm (xi_Tm x).
Proof.
exact (eq_refl).
Qed.
Lemma varLRen'_Tm_pointwise {m_Tm : nat} {n_Tm : nat}
(xi_Tm : fin m_Tm -> fin n_Tm) :
pointwise_relation _ eq (funcomp (ren_Tm xi_Tm) (VarTm m_Tm))
(funcomp (VarTm n_Tm) xi_Tm).
Proof.
exact (fun x => eq_refl).
Qed.
Class Up_Tm X Y :=
up_Tm : X -> Y.
Class Up_PTm X Y :=
up_PTm : X -> Y.
#[global]
Instance Subst_Tm {m_Tm n_Tm : nat}: (Subst1 _ _ _) := (@subst_Tm m_Tm n_Tm).
#[global]
Instance Up_Tm_Tm {m n_Tm : nat}: (Up_Tm _ _) := (@up_Tm_Tm m n_Tm).
#[global]
Instance Ren_Tm {m_Tm n_Tm : nat}: (Ren1 _ _ _) := (@ren_Tm m_Tm n_Tm).
#[global]
Instance VarInstance_Tm {n_Tm : nat}: (Var _ _) := (@VarTm n_Tm).
#[global]
Instance Subst_PTm {m_PTm n_PTm : nat}: (Subst1 _ _ _) :=
(@subst_PTm m_PTm n_PTm).
#[global]
Instance Up_PTm_PTm {m n_PTm : nat}: (Up_PTm _ _) := (@up_PTm_PTm m n_PTm).
#[global]
Instance Ren_PTm {m_PTm n_PTm : nat}: (Ren1 _ _ _) := (@ren_PTm m_PTm n_PTm).
#[global]
Instance VarInstance_PTm {n_PTm : nat}: (Var _ _) := (@VarPTm n_PTm).
Notation "[ sigma_Tm ]" := (subst_Tm sigma_Tm)
( at level 1, left associativity, only printing) : fscope.
Notation "s [ sigma_Tm ]" := (subst_Tm sigma_Tm s)
( at level 7, left associativity, only printing) : subst_scope.
Notation "↑__Tm" := up_Tm (only printing) : subst_scope.
Notation "↑__Tm" := up_Tm_Tm (only printing) : subst_scope.
Notation "⟨ xi_Tm ⟩" := (ren_Tm xi_Tm)
( at level 1, left associativity, only printing) : fscope.
Notation "s ⟨ xi_Tm ⟩" := (ren_Tm xi_Tm s)
( at level 7, left associativity, only printing) : subst_scope.
Notation "'var'" := VarTm ( at level 1, only printing) : subst_scope.
Notation "x '__Tm'" := (@ids _ _ VarInstance_Tm x)
( at level 5, format "x __Tm", only printing) : subst_scope.
Notation "x '__Tm'" := (VarTm x) ( at level 5, format "x __Tm") :
subst_scope.
Notation "[ sigma_PTm ]" := (subst_PTm sigma_PTm)
( at level 1, left associativity, only printing) : fscope.
Notation "s [ sigma_PTm ]" := (subst_PTm sigma_PTm s)
( at level 7, left associativity, only printing) : subst_scope.
Notation "↑__PTm" := up_PTm (only printing) : subst_scope.
Notation "↑__PTm" := up_PTm_PTm (only printing) : subst_scope.
Notation "⟨ xi_PTm ⟩" := (ren_PTm xi_PTm)
( at level 1, left associativity, only printing) : fscope.
Notation "s ⟨ xi_PTm ⟩" := (ren_PTm xi_PTm s)
( at level 7, left associativity, only printing) : subst_scope.
Notation "'var'" := VarPTm ( at level 1, only printing) : subst_scope.
Notation "x '__PTm'" := (@ids _ _ VarInstance_PTm x)
( at level 5, format "x __PTm", only printing) : subst_scope.
Notation "x '__PTm'" := (VarPTm x) ( at level 5, format "x __PTm") :
subst_scope.
#[global]
Instance subst_Tm_morphism {m_Tm : nat} {n_Tm : nat}:
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
(@subst_Tm m_Tm n_Tm)).
Proof.
exact (fun f_Tm g_Tm Eq_Tm s t Eq_st =>
eq_ind s (fun t' => subst_Tm f_Tm s = subst_Tm g_Tm t')
(ext_Tm f_Tm g_Tm Eq_Tm s) t Eq_st).
Qed.
#[global]
Instance subst_Tm_morphism2 {m_Tm : nat} {n_Tm : nat}:
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
(@subst_Tm m_Tm n_Tm)).
Proof.
exact (fun f_Tm g_Tm Eq_Tm s => ext_Tm f_Tm g_Tm Eq_Tm s).
Qed.
#[global]
Instance ren_Tm_morphism {m_Tm : nat} {n_Tm : nat}:
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
(@ren_Tm m_Tm n_Tm)).
Proof.
exact (fun f_Tm g_Tm Eq_Tm s t Eq_st =>
eq_ind s (fun t' => ren_Tm f_Tm s = ren_Tm g_Tm t')
(extRen_Tm f_Tm g_Tm Eq_Tm s) t Eq_st).
Qed.
#[global]
Instance ren_Tm_morphism2 {m_Tm : nat} {n_Tm : nat}:
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
(@ren_Tm m_Tm n_Tm)).
Proof.
exact (fun f_Tm g_Tm Eq_Tm s => extRen_Tm f_Tm g_Tm Eq_Tm s).
Qed.
#[global]
Instance subst_PTm_morphism {m_PTm : nat} {n_PTm : nat}:
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
(@subst_PTm m_PTm n_PTm)).
Proof.
exact (fun f_PTm g_PTm Eq_PTm s t Eq_st =>
eq_ind s (fun t' => subst_PTm f_PTm s = subst_PTm g_PTm t')
(ext_PTm f_PTm g_PTm Eq_PTm s) t Eq_st).
Qed.
#[global]
Instance subst_PTm_morphism2 {m_PTm : nat} {n_PTm : nat}:
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
(@subst_PTm m_PTm n_PTm)).
Proof.
exact (fun f_PTm g_PTm Eq_PTm s => ext_PTm f_PTm g_PTm Eq_PTm s).
Qed.
#[global]
Instance ren_PTm_morphism {m_PTm : nat} {n_PTm : nat}:
(Proper (respectful (pointwise_relation _ eq) (respectful eq eq))
(@ren_PTm m_PTm n_PTm)).
Proof.
exact (fun f_PTm g_PTm Eq_PTm s t Eq_st =>
eq_ind s (fun t' => ren_PTm f_PTm s = ren_PTm g_PTm t')
(extRen_PTm f_PTm g_PTm Eq_PTm s) t Eq_st).
Qed.
#[global]
Instance ren_PTm_morphism2 {m_PTm : nat} {n_PTm : nat}:
(Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq))
(@ren_PTm m_PTm n_PTm)).
Proof.
exact (fun f_PTm g_PTm Eq_PTm s => extRen_PTm f_PTm g_PTm Eq_PTm s).
Qed.
Ltac auto_unfold := repeat
unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1,
Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1,
VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1, Up_Tm_Tm,
Up_Tm, up_Tm, Subst_Tm, Subst1, subst1.
Tactic Notation "auto_unfold" "in" "*" := repeat
unfold VarInstance_PTm, Var, ids,
Ren_PTm, Ren1, ren1, Up_PTm_PTm,
Up_PTm, up_PTm, Subst_PTm,
Subst1, subst1, VarInstance_Tm,
Var, ids, Ren_Tm, Ren1, ren1,
Up_Tm_Tm, Up_Tm, up_Tm, Subst_Tm,
Subst1, subst1 in *.
Ltac asimpl' := repeat (first
[ progress setoid_rewrite substSubst_Tm_pointwise
| progress setoid_rewrite substSubst_Tm
| progress setoid_rewrite substRen_Tm_pointwise
| progress setoid_rewrite substRen_Tm
| progress setoid_rewrite renSubst_Tm_pointwise
| progress setoid_rewrite renSubst_Tm
| progress setoid_rewrite renRen'_Tm_pointwise
| progress setoid_rewrite renRen_Tm
| progress setoid_rewrite substSubst_PTm_pointwise
| progress setoid_rewrite substSubst_PTm
| progress setoid_rewrite substRen_PTm_pointwise
| progress setoid_rewrite substRen_PTm
| progress setoid_rewrite renSubst_PTm_pointwise
| progress setoid_rewrite renSubst_PTm
| progress setoid_rewrite renRen'_PTm_pointwise
| progress setoid_rewrite renRen_PTm
| progress setoid_rewrite varLRen'_Tm_pointwise
| progress setoid_rewrite varLRen'_Tm
| progress setoid_rewrite varL'_Tm_pointwise
| progress setoid_rewrite varL'_Tm
| progress setoid_rewrite rinstId'_Tm_pointwise
| progress setoid_rewrite rinstId'_Tm
| progress setoid_rewrite instId'_Tm_pointwise
| progress setoid_rewrite instId'_Tm
| progress setoid_rewrite varLRen'_PTm_pointwise
| progress setoid_rewrite varLRen'_PTm
| progress setoid_rewrite varL'_PTm_pointwise
| progress setoid_rewrite varL'_PTm
| progress setoid_rewrite rinstId'_PTm_pointwise
| progress setoid_rewrite rinstId'_PTm
| progress setoid_rewrite instId'_PTm_pointwise
| progress setoid_rewrite instId'_PTm
| progress
unfold up_list_Tm_Tm, up_Tm_Tm, upRen_list_Tm_Tm,
upRen_Tm_Tm, up_list_PTm_PTm, up_PTm_PTm,
upRen_list_PTm_PTm, upRen_PTm_PTm, up_ren
| progress cbn[subst_Tm ren_Tm subst_PTm ren_PTm]
| progress fsimpl ]).
Ltac asimpl := check_no_evars;
repeat
unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1,
Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1,
VarInstance_Tm, Var, ids, Ren_Tm, Ren1, ren1, Up_Tm_Tm,
Up_Tm, up_Tm, Subst_Tm, Subst1, subst1 in *; asimpl';
minimize.
Tactic Notation "asimpl" "in" hyp(J) := revert J; asimpl; intros J.
Tactic Notation "auto_case" := auto_case ltac:(asimpl; cbn; eauto).
Ltac substify := auto_unfold; try setoid_rewrite rinstInst'_Tm_pointwise;
try setoid_rewrite rinstInst'_Tm;
try setoid_rewrite rinstInst'_PTm_pointwise;
try setoid_rewrite rinstInst'_PTm.
Ltac renamify := auto_unfold; try setoid_rewrite_left rinstInst'_Tm_pointwise;
try setoid_rewrite_left rinstInst'_Tm;
try setoid_rewrite_left rinstInst'_PTm_pointwise;
try setoid_rewrite_left rinstInst'_PTm.
End Core.
Module Extra.
Import
Core.
Arguments VarTm {n_Tm}.
Arguments If {n_Tm}.
Arguments Bool {n_Tm}.
Arguments BVal {n_Tm}.
Arguments Univ {n_Tm}.
Arguments TBind {n_Tm}.
Arguments Proj {n_Tm}.
Arguments Pair {n_Tm}.
Arguments App {n_Tm}.
Arguments Abs {n_Tm}.
Arguments VarPTm {n_PTm}.
Arguments PBot {n_PTm}.
Arguments PUniv {n_PTm}.
Arguments PConst {n_PTm}.
Arguments PProj {n_PTm}.
Arguments PPair {n_PTm}.
Arguments PApp {n_PTm}.
Arguments PAbs {n_PTm}.
#[global]Hint Opaque subst_Tm: rewrite.
#[global]Hint Opaque ren_Tm: rewrite.
#[global]Hint Opaque subst_PTm: rewrite.
#[global]Hint Opaque ren_PTm: rewrite.
End Extra.
Module interface.
Export Core.
Export Extra.
End interface.
Export interface.