Compare commits

..

No commits in common. "main" and "church-boolean-sep" have entirely different histories.

6 changed files with 1359 additions and 1010 deletions

View file

@ -6,7 +6,7 @@ theories: $(COQMAKEFILE) FORCE
validate: $(COQMAKEFILE) FORCE
$(MAKE) -f $(COQMAKEFILE) validate
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
$(COQMAKEFILE) : theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
$(COQBIN)coq_makefile -f _CoqProject -o $(COQMAKEFILE)
install: $(COQMAKEFILE)
@ -15,13 +15,13 @@ install: $(COQMAKEFILE)
uninstall: $(COQMAKEFILE)
$(MAKE) -f $(COQMAKEFILE) uninstall
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v : syntax.sig
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
.PHONY: clean FORCE
clean:
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v theories/Autosubst2/unscoped.v
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
FORCE:

View file

@ -0,0 +1,419 @@
(** * Autosubst Header for Scoped Syntax
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
Version: December 11, 2019.
*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Set Implicit Arguments.
Unset Strict Implicit.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
*)
Fixpoint fin (n : nat) : Type :=
match n with
| 0 => False
| S m => option (fin m)
end.
(** Renamings and Injective Renamings
_Renamings_ are mappings between finite types.
*)
Definition ren (m n : nat) : Type := fin m -> fin n.
Definition id {X} := @Datatypes.id X.
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
Definition var_zero {n : nat} : fin (S n) := None.
Definition null {T} (i : fin 0) : T := match i with end.
Definition shift {n : nat} : ren n (S n) :=
Some.
(** Extension of Finite Mappings
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
*)
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
match m with
| None => x
| Some i => f i
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** ** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
(** ** Proofs for substitution primitives *)
(** Forward Function Composition
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** Generic lifting operation for renamings *)
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
var_zero .: xi >> shift.
(** Generic proof that lifting of renamings composes. *)
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [x|].
- cbn. unfold funcomp. now rewrite <- E.
- reflexivity.
Qed.
Arguments up_ren_ren {k l m} xi zeta rho E.
Lemma fin_eta {X} (f g : fin 0 -> X) :
pointwise_relation _ eq f g.
Proof. intros []. Qed.
(** Eta laws *)
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' {n : nat} :
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
(* (scons s f (shift x)) = f x. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} {n:nat} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
Proof.
intros t t' -> sigma tau H.
intros [x|].
cbn. apply H.
reflexivity.
Qed.
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [x|].
cbn. apply H.
reflexivity.
Qed.
(** ** Variadic Substitution Primitives *)
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
fun n => match p with
| 0 => n
| S p => Some (shift_p p n)
end.
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
Proof.
destruct m.
- intros n f g. exact g.
- intros n f g. cbn. apply scons.
+ exact (f var_zero).
+ apply scons_p.
* intros z. exact (f (Some z)).
* exact g.
Defined.
#[export] Hint Opaque scons_p : rewrite.
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau.
intros x.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
Proof.
induction m.
- intros [].
- intros [x|].
+ exact (shift_p 1 (IHm x)).
+ exact var_zero.
Defined.
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
(scons_p f g) (zero_p z) = f z.
Proof.
induction m.
- inversion z.
- destruct z.
+ simpl. simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
Proof.
intros z.
unfold funcomp.
induction m.
- inversion z.
- destruct z.
+ simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
scons_p f g (shift_p m z) = g z.
Proof. induction m; cbn; eauto. Qed.
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
Proof. intros z. induction m; cbn; eauto. Qed.
Lemma destruct_fin {m n} (x : fin (m + n)):
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
Proof.
induction m; simpl in *.
- right. eauto.
- destruct x as [x|].
+ destruct (IHm x) as [[x' ->] |[x' ->]].
* left. now exists (Some x').
* right. eauto.
+ left. exists None. eauto.
Qed.
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
Proof.
intros x.
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
(* TODO better way to solve this? *)
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
now setoid_rewrite scons_p_head_pointwise.
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
now rewrite !scons_p_tail_pointwise.
Qed.
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
(** Generic n-ary lifting operation. *)
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
scons_p (zero_p ) (xi >> shift_p _).
Arguments upRen_p p {m n} xi.
(** Generic proof for composition of n-ary lifting. *)
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
Proof.
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
now rewrite <- E.
Qed.
Arguments zero_p m {n}.
Arguments scons_p {X} m {n} f g.
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
Proof.
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
- rewrite scons_p_head'. eauto.
- rewrite scons_p_tail'. eauto.
Qed.
Arguments scons_p_eta {X} {m n} {f g} h {z}.
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
(** ** Notations for Scoped Syntax *)
Module ScopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End ScopedNotations.
(** ** Tactics for Scoped Syntax *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : fin 0), _] => intros []; t
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
| [|- forall (i : fin (S _)), _] => intros [?|]; t
end).
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
| [|- context[idren >> ?f]] => change (idren >> f) with f
| [|- context[?f >> idren]] => change (f >> idren) with f
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
(* | _ => progress autorewrite with FunctorInstances *)
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
end.

File diff suppressed because it is too large Load diff

View file

@ -1,213 +0,0 @@
(** * Autosubst Header for Unnamed Syntax
Version: December 11, 2019.
*)
(* Adrian:
I changed this library a bit to work better with my generated code.
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus. *)
Definition shift := S.
Definition var_zero := 0.
Definition id {X} := @Datatypes.id X.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation
Required to make notation work. *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** *** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
#[export] Instance idsRen : Var nat nat := id.
(** ** Proofs for the substitution primitives. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** A generic lifting of a renaming. *)
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
(** A generic proof that lifting of renamings composes. *)
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
(** Eta laws. *)
Lemma scons_eta' {T} (f : nat -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t -> sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
(** ** Generic lifting of an allfv predicate *)
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
(** ** Notations for unscoped syntax *)
Module UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
(** ** Tactics for unscoped syntax *)
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : nat), _] => intros []; t
end).
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
end.

View file

@ -7,7 +7,7 @@ Require Import Arith.Wf_nat.
Require Import Psatz.
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Ltac2 spec_refl () :=
List.iter
@ -22,7 +22,7 @@ Ltac spec_refl := ltac2:(spec_refl ()).
(* Trying my best to not write C style module_funcname *)
Module Par.
Inductive R : PTm -> PTm -> Prop :=
Inductive R {n} : PTm n -> PTm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
@ -72,35 +72,35 @@ Module Par.
| Bot :
R PBot PBot.
Lemma refl (a : PTm) : R a a.
elim : a; hauto ctrs:R.
Lemma refl n (a : PTm n) : R a a.
elim : n /a; hauto ctrs:R.
Qed.
Lemma AppAbs' a0 a1 (b0 b1 t : PTm) :
Lemma AppAbs' n a0 a1 (b0 b1 t : PTm n) :
t = subst_PTm (scons b1 VarPTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (PApp (PAbs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' p (a0 a1 b0 b1 : PTm) t :
Lemma ProjPair' n p (a0 a1 b0 b1 : PTm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (PProj p (PPair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma AppEta' (a0 a1 b : PTm) :
Lemma AppEta' n (a0 a1 b : PTm n) :
b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma renaming (a b : PTm) (ξ : nat -> nat) :
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
Proof.
move => h. move : ξ.
elim : a b /h.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : match goal with
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
@ -109,23 +109,23 @@ Module Par.
Qed.
Lemma morphing (a b : PTm) (ρ0 ρ1 : nat -> PTm) :
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
Proof.
move => + h. move : ρ0 ρ1. elim : a b/h.
- move => a0 a1 b0 b1 ha iha hb ihb ρ0 ρ1 hρ /=.
move => + h. move : m ρ0 ρ1. elim : n a b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=.
eapply AppAbs' with (a1 := subst_PTm (up_PTm_PTm ρ1) a1); eauto.
by asimpl.
hauto l:on use:renaming inv:nat.
hauto l:on use:renaming inv:option.
- hauto lq:on rew:off ctrs:R.
- hauto l:on inv:nat use:renaming ctrs:R.
- hauto l:on inv:option use:renaming ctrs:R.
- hauto lq:on use:ProjPair'.
- move => a0 a1 ha iha ρ0 ρ1 hρ /=.
- move => n a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- sfirstorder.
- hauto l:on inv:nat ctrs:R use:renaming.
- hauto l:on inv:option ctrs:R use:renaming.
- hauto q:on ctrs:R.
- qauto l:on ctrs:R.
- qauto l:on ctrs:R.
@ -134,16 +134,16 @@ Module Par.
- qauto l:on ctrs:R.
Qed.
Lemma substing (a b : PTm) (ρ : nat -> PTm) :
Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) :
R a b -> R (subst_PTm ρ a) (subst_PTm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
Lemma antirenaming (a : PTm) (b : PTm) (ξ : nat -> nat) :
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
Proof.
move E : (ren_PTm ξ a) => u h.
move : ξ a E. elim : u b/h.
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//=.
move : n ξ a E. elim : m u b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
move => c c0 [+ ?]. subst.
case : c => //=.
move => c [?]. subst.
@ -153,7 +153,7 @@ Module Par.
eexists. split.
apply AppAbs; eauto.
by asimpl.
- move => a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc ξ []//=.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
move => []//= t t0 t1 [*]. subst.
spec_refl.
move : iha => [? [*]].
@ -162,43 +162,43 @@ Module Par.
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => p a0 a1 ha iha ξ []//= p0 []//= t [*]. subst.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl.
- move => p a0 a1 b0 b1 ha iha hb ihb ξ []//= p0 []//= t t0[*].
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
subst. spec_refl.
move : iha => [b0 [? ?]].
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => a0 a1 ha iha ξ a ?. subst.
- move => n a0 a1 ha iha m ξ a ?. subst.
spec_refl. move : iha => [a0 [? ?]]. subst.
eexists. split. apply AppEta; eauto.
by asimpl.
- move => a0 a1 ha iha ξ a ?. subst.
- move => n a0 a1 ha iha m ξ a ?. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply PairEta; eauto.
by asimpl.
- move => i ξ []//=.
- move => n i m ξ []//=.
hauto l:on.
- move => a0 a1 ha iha ξ []//= t [*]. subst.
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
spec_refl.
move :iha => [b0 [? ?]]. subst.
eexists. split. by apply AbsCong; eauto.
done.
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0 [*]. subst.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply AppCong; eauto.
done.
- move => a0 a1 b0 b1 ha iha hb ihb ξ []//= t t0[*]. subst.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split=>/=. by apply PairCong; eauto.
done.
- move => p a0 a1 ha iha ξ []//= p0 t [*]. subst.
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
eexists. split. by apply ProjCong; eauto.
@ -359,7 +359,7 @@ Module RPar.
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:nat. Qed.
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
@ -399,7 +399,7 @@ Module RPar.
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:nat.
qauto l:on ctrs:R inv:option.
Qed.
Lemma var_or_const_imp {n} (a b : PTm n) :
@ -595,7 +595,7 @@ Module RPar'.
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:nat. Qed.
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
@ -633,7 +633,7 @@ Module RPar'.
R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:nat.
qauto l:on ctrs:R inv:option.
Qed.
Lemma var_or_const_imp {n} (a b : PTm n) :
@ -786,7 +786,7 @@ Module ERed.
move => h. move : m ρ. elim : n a b / h => n.
move => a m ρ /=.
apply : AppEta'; eauto. by asimpl.
all : hauto ctrs:R inv:nat use:renaming.
all : hauto ctrs:R inv:option use:renaming.
Qed.
End ERed.
@ -892,11 +892,11 @@ Module EPar.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:nat.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:nat.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
Qed.
@ -907,7 +907,7 @@ Module EPar.
R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1).
Proof.
move => h0 h1. apply morphing => //.
hauto lq:on ctrs:R inv:nat.
hauto lq:on ctrs:R inv:option.
Qed.
End EPar.
@ -1018,7 +1018,7 @@ Module RPars.
Lemma substing n (a b : PTm (S n)) c :
rtc RPar.R a b ->
rtc RPar.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
Proof. hauto lq:on use:morphing inv:nat. Qed.
Proof. hauto lq:on use:morphing inv:option. Qed.
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
(forall i, var_or_const (ρ i)) ->
@ -1099,7 +1099,7 @@ Module RPars'.
Lemma substing n (a b : PTm (S n)) c :
rtc RPar'.R a b ->
rtc RPar'.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b).
Proof. hauto lq:on use:morphing inv:nat. Qed.
Proof. hauto lq:on use:morphing inv:option. Qed.
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) :
(forall i, var_or_const (ρ i)) ->
@ -2328,7 +2328,7 @@ Proof.
have : wn (subst_PTm (scons (PBot) VarPTm) a3) by sfirstorder.
move => h. apply wn_abs.
move : h. apply wn_antirenaming.
hauto lq:on rew:off inv:nat.
hauto lq:on rew:off inv:option.
+ hauto q:on inv:RPar'.R ctrs:rtc b:on.
Qed.

View file

@ -1,251 +0,0 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
| T_Var i Γ A :
Γ ->
lookup i Γ A ->
Γ VarPTm i A
| T_Bind Γ i p (A : PTm) (B : PTm) :
Γ A PUniv i ->
cons A Γ B PUniv i ->
Γ PBind p A B PUniv i
| T_Abs Γ (a : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B
| T_App Γ (b a : PTm) A B :
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B
| T_Proj1 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PL a A
| T_Proj2 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ Γ i :
Γ ->
Γ PUniv i PUniv (S i)
| T_Nat Γ i :
Γ ->
Γ PNat PUniv i
| T_Zero Γ :
Γ ->
Γ PZero PNat
| T_Suc Γ (a : PTm) :
Γ a PNat ->
Γ PSuc a PNat
| T_Ind Γ P (a : PTm) b c i :
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c subst_PTm (scons a VarPTm) P
| T_Conv Γ (a : PTm) A B :
Γ a A ->
Γ A B ->
Γ a B
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| E_Refl Γ (a : PTm ) A :
Γ a A ->
Γ a a A
| E_Symmetric Γ (a b : PTm) A :
Γ a b A ->
Γ b a A
| E_Transitive Γ (a b c : PTm) A :
Γ a b A ->
Γ b c A ->
Γ a c A
(* Congruence *)
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_Abs Γ (a b : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a b B ->
Γ PAbs a PAbs b PBind PPi A B
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Pair Γ (a0 a1 b0 b1 : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B
| E_Proj1 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A
| E_Proj2 Γ i (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
(cons PNat Γ) P0 PUniv i ->
(cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
(cons P0 ((cons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0
| E_SucCong Γ (a b : PTm) :
Γ a b PNat ->
Γ PSuc a PSuc b PNat
| E_Conv Γ (a b : PTm) A B :
Γ a b A ->
Γ A B ->
Γ a b B
(* Beta *)
| E_AppAbs Γ (a : PTm) b A B i:
Γ PBind PPi A B PUniv i ->
Γ b A ->
(cons A Γ) a B ->
Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B
| E_ProjPair1 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PL (PPair a b) a A
| E_ProjPair2 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B
| E_IndZero Γ P i (b : PTm) c :
(cons PNat Γ) P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P
| E_IndSuc Γ P (a : PTm) b c i :
(cons PNat Γ) P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P
(* Eta *)
| E_AppEta Γ (b : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B
| E_PairEta Γ (a : PTm ) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a PBind PSig A B ->
Γ a PPair (PProj PL a) (PProj PR a) PBind PSig A B
with LEq : list PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| Su_Transitive Γ (A B C : PTm) :
Γ A B ->
Γ B C ->
Γ A C
(* Congruence *)
| Su_Univ Γ i j :
Γ ->
i <= j ->
Γ PUniv i PUniv j
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
Γ A0 PUniv i ->
Γ A1 A0 ->
(cons A0 Γ) B0 B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
Γ A1 PUniv i ->
Γ A0 A1 ->
(cons A1 Γ) B0 B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1
(* Injecting from equalities *)
| Su_Eq Γ (A : PTm) B i :
Γ A B PUniv i ->
Γ A B
(* Projection axioms *)
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ A1 A0
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ A0 A1
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : list PTm -> Prop :=
| Wff_Nil :
nil
| Wff_Cons Γ (A : PTm) i :
Γ ->
Γ A PUniv i ->
(* -------------------------------- *)
(cons A Γ)
where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
Scheme wf_ind := Induction for Wff Sort Prop
with wt_ind := Induction for Wt Sort Prop
with eq_ind := Induction for Eq Sort Prop
with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
(* Lemma lem : *)
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
(* Proof. apply wt_mutual. ... *)