Compare commits
14 commits
Author | SHA1 | Date | |
---|---|---|---|
0f1e85c853 | |||
fd8335a803 | |||
34a0c2856e | |||
e75d7745fe | |||
0d3b751a33 | |||
7021497615 | |||
|
bf2a369824 | ||
|
ec03826083 | ||
9ab338c9e1 | |||
602fe929bc | |||
05d330254e | |||
a6fd48c009 | |||
919f1513ce | |||
f0da5c97bb |
2 changed files with 1518 additions and 294 deletions
1227
theories/fp_red.v
1227
theories/fp_red.v
File diff suppressed because it is too large
Load diff
|
@ -6,18 +6,22 @@ Require Import ssreflect ssrbool.
|
|||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||||
Import Psatz.
|
||||
Definition ProdSpace (PA : Tm 0 -> Prop)
|
||||
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) b : Prop :=
|
||||
|
||||
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
||||
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
|
||||
forall a PB, PA a -> PF a PB -> PB (App b a).
|
||||
|
||||
Definition SumSpace (PA : Tm 0 -> Prop)
|
||||
(PF : Tm 0 -> (Tm 0 -> Prop) -> Prop) t : Prop :=
|
||||
exists a b, rtc RPar.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
Definition SumSpace {n} (PA : Tm n -> Prop)
|
||||
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
|
||||
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
|
||||
Definition BindSpace p := if p is TPi then ProdSpace else SumSpace.
|
||||
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
|
||||
|
||||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||||
Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop :=
|
||||
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
|
||||
| InterpExt_Ne A :
|
||||
ne A ->
|
||||
⟦ A ⟧ i ;; I ↘ wne
|
||||
| InterpExt_Bind p A B PA PF :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
|
@ -29,12 +33,12 @@ Inductive InterpExt i (I : nat -> Tm 0 -> Prop) : Tm 0 -> (Tm 0 -> Prop) -> Prop
|
|||
⟦ Univ j ⟧ i ;; I ↘ (I j)
|
||||
|
||||
| InterpExt_Step A A0 PA :
|
||||
RPar.R A A0 ->
|
||||
RPar'.R A A0 ->
|
||||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PA
|
||||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||||
|
||||
Lemma InterpExt_Univ' i I j (PF : Tm 0 -> Prop) :
|
||||
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
|
||||
PF = I j ->
|
||||
j < i ->
|
||||
⟦ Univ j ⟧ i ;; I ↘ PF.
|
||||
|
@ -42,28 +46,29 @@ Proof. hauto lq:on ctrs:InterpExt. Qed.
|
|||
|
||||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||||
|
||||
Equations InterpUnivN (i : nat) : Tm 0 -> (Tm 0 -> Prop) -> Prop by wf i lt :=
|
||||
InterpUnivN i := @InterpExt i
|
||||
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
|
||||
InterpUnivN n i := @InterpExt n i
|
||||
(fun j A =>
|
||||
match j <? i with
|
||||
| left _ => exists PA, InterpUnivN j A PA
|
||||
| left _ => exists PA, InterpUnivN n j A PA
|
||||
| right _ => False
|
||||
end).
|
||||
Arguments InterpUnivN .
|
||||
Arguments InterpUnivN {n}.
|
||||
|
||||
Lemma InterpExt_lt_impl i I I' A (PA : Tm 0 -> Prop) :
|
||||
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
|
||||
(forall j, j < i -> I j = I' j) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I' ↘ PA.
|
||||
Proof.
|
||||
move => hI h.
|
||||
elim : A PA /h.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on rew:off ctrs:InterpExt.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on ctrs:InterpExt.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_lt_eq i I I' A (PA : Tm 0 -> Prop) :
|
||||
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
|
||||
(forall j, j < i -> I j = I' j) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA =
|
||||
⟦ A ⟧ i ;; I' ↘ PA.
|
||||
|
@ -75,8 +80,8 @@ Qed.
|
|||
|
||||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||||
|
||||
Lemma InterpUnivN_nolt i :
|
||||
InterpUnivN i = InterpExt i (fun j (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||||
Lemma InterpUnivN_nolt n i :
|
||||
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||||
Proof.
|
||||
simp InterpUnivN.
|
||||
extensionality A. extensionality PA.
|
||||
|
@ -89,12 +94,12 @@ Qed.
|
|||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||||
|
||||
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
||||
RPar.R a b -> RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||
Proof. hauto l:on inv:option use:RPar.substing, RPar.refl. Qed.
|
||||
RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||||
Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed.
|
||||
|
||||
Lemma InterpExt_Bind_inv p i I (A : Tm 0) B P
|
||||
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
|
||||
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
||||
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
|
||||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||
⟦ A ⟧ i ;; I ↘ PA /\
|
||||
(forall a, PA a -> exists PB, PF a PB) /\
|
||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||
|
@ -103,24 +108,35 @@ Proof.
|
|||
move E : (TBind p A B) h => T h.
|
||||
move : A B E.
|
||||
elim : T P / h => //.
|
||||
- move => //= *. scongruence.
|
||||
- hauto l:on.
|
||||
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
||||
elim /RPar.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Univ_inv i I j P
|
||||
(h : ⟦ Univ j ⟧ i ;; I ↘ P) :
|
||||
Lemma InterpExt_Ne_inv n i A I P
|
||||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ P) :
|
||||
ne A ->
|
||||
P = wne.
|
||||
Proof.
|
||||
elim : A P / h => //=.
|
||||
qauto l:on ctrs:prov inv:prov use:nf_refl.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Univ_inv n i I j P
|
||||
(h : ⟦ Univ j : Tm n ⟧ i ;; I ↘ P) :
|
||||
P = I j /\ j < i.
|
||||
Proof.
|
||||
move : h.
|
||||
move E : (Univ j) => T h. move : j E.
|
||||
elim : T P /h => //.
|
||||
- move => //= *. scongruence.
|
||||
- hauto l:on.
|
||||
- hauto lq:on rew:off inv:RPar.R.
|
||||
- hauto lq:on rew:off inv:RPar'.R.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Bind_nopf p i I (A : Tm 0) B PA :
|
||||
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||||
⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
||||
|
@ -128,7 +144,7 @@ Proof.
|
|||
move => h0 h1. apply InterpExt_Bind =>//.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUnivN_Fun_nopf p i (A : Tm 0) B PA :
|
||||
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
||||
⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
||||
|
@ -136,7 +152,7 @@ Proof.
|
|||
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_cumulative i j I (A : Tm 0) PA :
|
||||
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
||||
i <= j ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ j ;; I ↘ PA.
|
||||
|
@ -146,61 +162,87 @@ Proof.
|
|||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||||
Qed.
|
||||
|
||||
Lemma InterpUnivN_cumulative i (A : Tm 0) PA :
|
||||
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||||
⟦ A ⟧ j ↘ PA.
|
||||
Proof.
|
||||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_preservation i I (A : Tm 0) B P (h : InterpExt i I A P) :
|
||||
RPar.R A B ->
|
||||
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
||||
RPar'.R A B ->
|
||||
⟦ B ⟧ i ;; I ↘ P.
|
||||
Proof.
|
||||
move : B.
|
||||
elim : A P / h; auto.
|
||||
- hauto lq:on use:nf_refl ctrs:InterpExt.
|
||||
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
||||
elim /RPar.inv : hT => //.
|
||||
elim /RPar'.inv : hT => //.
|
||||
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
|
||||
apply InterpExt_Bind; auto => a PB hPB0.
|
||||
apply : ihPB; eauto.
|
||||
sfirstorder use:RPar.cong, RPar.refl.
|
||||
- hauto lq:on inv:RPar.R ctrs:InterpExt.
|
||||
sfirstorder use:RPar'.cong, RPar'.refl.
|
||||
- hauto lq:on inv:RPar'.R ctrs:InterpExt.
|
||||
- move => A B P h0 h1 ih1 C hC.
|
||||
have [D [h2 h3]] := RPar_diamond _ _ _ _ h0 hC.
|
||||
have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC.
|
||||
hauto lq:on ctrs:InterpExt.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUnivN_preservation i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
RPar.R A B ->
|
||||
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
RPar'.R A B ->
|
||||
⟦ B ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
||||
|
||||
Lemma InterpExt_back_preservation_star i I (A : Tm 0) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
||||
rtc RPar'.R A B ->
|
||||
⟦ A ⟧ i ;; I ↘ P.
|
||||
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
||||
|
||||
Lemma InterpExt_preservation_star i I (A : Tm 0) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
||||
rtc RPar'.R A B ->
|
||||
⟦ B ⟧ i ;; I ↘ P.
|
||||
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
||||
|
||||
Lemma InterpUnivN_preservation_star i (A : Tm 0) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||||
rtc RPar'.R A B ->
|
||||
⟦ B ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
||||
|
||||
Lemma InterpUnivN_back_preservation_star i (A : Tm 0) B P (h : ⟦ B ⟧ i ↘ P) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) :
|
||||
rtc RPar'.R A B ->
|
||||
⟦ A ⟧ i ↘ P.
|
||||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
||||
|
||||
Lemma InterpExtInv i I (A : Tm 0) PA :
|
||||
Function hfb {n} (A : Tm n) :=
|
||||
match A with
|
||||
| TBind _ _ _ => true
|
||||
| Univ _ => true
|
||||
| _ => ne A
|
||||
end.
|
||||
|
||||
Inductive hfb_case {n} : Tm n -> Prop :=
|
||||
| hfb_bind p A B :
|
||||
hfb_case (TBind p A B)
|
||||
| hfb_univ i :
|
||||
hfb_case (Univ i)
|
||||
| hfb_ne A :
|
||||
ne A ->
|
||||
hfb_case A.
|
||||
|
||||
Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop.
|
||||
|
||||
Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A.
|
||||
Proof. case : A => //=. Qed.
|
||||
|
||||
Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A.
|
||||
Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed.
|
||||
|
||||
Lemma InterpExtInv n i I (A : Tm n) PA :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
exists B, hfb B /\ rtc RPar.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||
exists B, hfb B /\ rtc RPar'.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||||
Proof.
|
||||
move => h. elim : A PA /h.
|
||||
- hauto q:on ctrs:InterpExt, rtc use:ne_hfb.
|
||||
- move => p A B PA PF hPA _ hPF hPF0 _.
|
||||
exists (TBind p A B). repeat split => //=.
|
||||
apply rtc_refl.
|
||||
|
@ -210,17 +252,22 @@ Proof.
|
|||
- hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma RPars_Pars (A B : Tm 0) :
|
||||
rtc RPar.R A B ->
|
||||
Lemma RPar'_Par n (A B : Tm n) :
|
||||
RPar'.R A B ->
|
||||
Par.R A B.
|
||||
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
||||
|
||||
Lemma RPar's_Pars n (A B : Tm n) :
|
||||
rtc RPar'.R A B ->
|
||||
rtc Par.R A B.
|
||||
Proof. hauto lq:on use:RPar_Par, rtc_subrel. Qed.
|
||||
Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed.
|
||||
|
||||
Lemma RPars_join (A B : Tm 0) :
|
||||
rtc RPar.R A B -> join A B.
|
||||
Proof. hauto lq:on ctrs:rtc use:RPars_Pars. Qed.
|
||||
Lemma RPar's_join n (A B : Tm n) :
|
||||
rtc RPar'.R A B -> join A B.
|
||||
Proof. hauto lq:on ctrs:rtc use:RPar's_Pars. Qed.
|
||||
|
||||
Lemma bindspace_iff p (PA : Tm 0 -> Prop) PF PF0 b :
|
||||
(forall (a : Tm 0) (PB PB0 : Tm 0 -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||||
Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b :
|
||||
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
||||
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
|
||||
|
@ -241,21 +288,76 @@ Proof.
|
|||
hauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Join i I (A B : Tm 0) PA PB :
|
||||
Lemma ne_prov_inv n (a : Tm n) :
|
||||
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
|
||||
Proof.
|
||||
elim : n /a => //=.
|
||||
- hauto lq:on ctrs:prov.
|
||||
- hauto lq:on rew:off ctrs:prov b:on.
|
||||
- hauto lq:on ctrs:prov.
|
||||
- move => n.
|
||||
have : @prov n Bot Bot by auto using P_Bot.
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Lemma ne_pars_inv n (a b : Tm n) :
|
||||
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
|
||||
Proof.
|
||||
move /ne_prov_inv.
|
||||
sfirstorder use:prov_pars.
|
||||
Qed.
|
||||
|
||||
Lemma ne_pars_extract n (a b : Tm n) :
|
||||
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
|
||||
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
|
||||
|
||||
Lemma join_bind_ne_contra n p (A : Tm n) B C :
|
||||
ne C ->
|
||||
join (TBind p A B) C -> False.
|
||||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
|
||||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
Lemma join_univ_ne_contra n i C :
|
||||
ne C ->
|
||||
join (Univ i : Tm n) C -> False.
|
||||
Proof.
|
||||
move => hC [D [h0 h1]].
|
||||
move /pars_univ_inv : h0 => ?.
|
||||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
|
||||
|
||||
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ B ⟧ i ;; I ↘ PB ->
|
||||
join A B ->
|
||||
PA = PB.
|
||||
Proof.
|
||||
move => h. move : B PB. elim : A PA /h.
|
||||
- move => A hA B PB /InterpExtInv.
|
||||
move => [B0 []].
|
||||
move /hfb_caseP. elim/hfb_inv => _.
|
||||
+ move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso.
|
||||
eauto with join.
|
||||
+ move => ? ? [/RPar's_join *]. subst. exfalso.
|
||||
eauto with join.
|
||||
+ hauto lq:on use:InterpExt_Ne_inv.
|
||||
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
||||
move => [B0 []].
|
||||
case : B0 => //=.
|
||||
+ move => p0 A0 B0 _ [hr hPi].
|
||||
move /hfb_caseP.
|
||||
elim /hfb_inv => _.
|
||||
rename B0 into B00.
|
||||
+ move => p0 A0 B0 ? [hr hPi]. subst.
|
||||
move /InterpExt_Bind_inv : hPi.
|
||||
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
||||
move => hjoin.
|
||||
have{}hr : join U (TBind p0 A0 B0) by auto using RPars_join.
|
||||
have{}hr : join U (TBind p0 A0 B0) by auto using RPar's_join.
|
||||
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
|
||||
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
|
||||
move => [? [h0 h1]]. subst.
|
||||
|
@ -267,62 +369,64 @@ Proof.
|
|||
move => a PB PB0 hPB hPB0.
|
||||
apply : ihPF; eauto.
|
||||
by apply join_substing.
|
||||
+ move => j _.
|
||||
+ move => j ?. subst.
|
||||
move => [h0 h1] h.
|
||||
have ? : join U (Univ j) by eauto using RPars_join.
|
||||
have ? : join U (Univ j) by eauto using RPar's_join.
|
||||
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
|
||||
move => ?. exfalso.
|
||||
eauto using join_univ_pi_contra.
|
||||
+ move => A0 ? ? [/RPar's_join ?]. subst.
|
||||
move => _ ?. exfalso. eauto with join.
|
||||
- move => j ? B PB /InterpExtInv.
|
||||
move => [+ []]. case => //=.
|
||||
move => [? []]. move/hfb_caseP.
|
||||
elim /hfb_inv => //= _.
|
||||
+ move => p A0 B0 _ [].
|
||||
move /RPars_join => *.
|
||||
have ? : join (TBind p A0 B0) (Univ j) by eauto using join_symmetric, join_transitive.
|
||||
exfalso.
|
||||
eauto using join_univ_pi_contra.
|
||||
+ move => m _ [/RPars_join h0 + h1].
|
||||
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm 0) (Univ m) by eauto using join_transitive.
|
||||
move /RPar's_join => *.
|
||||
exfalso. eauto with join.
|
||||
+ move => m _ [/RPar's_join h0 + h1].
|
||||
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
|
||||
subst.
|
||||
move /InterpExt_Univ_inv. firstorder.
|
||||
+ move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join.
|
||||
- move => A A0 PA h.
|
||||
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar_Par, relations.rtc_once.
|
||||
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar'_Par, relations.rtc_once.
|
||||
eauto using join_transitive.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Join i (A B : Tm 0) PA PB :
|
||||
Lemma InterpUniv_Join n i (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ B ⟧ i ↘ PB ->
|
||||
join A B ->
|
||||
PA = PB.
|
||||
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Bind_inv p i (A : Tm 0) B P
|
||||
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
|
||||
(h : ⟦ TBind p A B ⟧ i ↘ P) :
|
||||
exists (PA : Tm 0 -> Prop) (PF : Tm 0 -> (Tm 0 -> Prop) -> Prop),
|
||||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||||
⟦ A ⟧ i ↘ PA /\
|
||||
(forall a, PA a -> exists PB, PF a PB) /\
|
||||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||||
P = BindSpace p PA PF.
|
||||
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Univ_inv i j P
|
||||
Lemma InterpUniv_Univ_inv n i j P
|
||||
(h : ⟦ Univ j ⟧ i ↘ P) :
|
||||
P = (fun (A : Tm 0) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||||
P = (fun (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||||
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpExt_Functional i I (A B : Tm 0) PA PB :
|
||||
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PB ->
|
||||
PA = PB.
|
||||
Proof. hauto use:InterpExt_Join, join_refl. Qed.
|
||||
|
||||
Lemma InterpUniv_Functional i (A : Tm 0) PA PB :
|
||||
Lemma InterpUniv_Functional n i (A : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ i ↘ PB ->
|
||||
PA = PB.
|
||||
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpUniv_Join' i j (A B : Tm 0) PA PB :
|
||||
Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ B ⟧ j ↘ PB ->
|
||||
join A B ->
|
||||
|
@ -335,16 +439,16 @@ Proof.
|
|||
eauto using InterpUniv_Join.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Functional' i j A PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
Lemma InterpUniv_Functional' n i j A PA PB :
|
||||
⟦ A : Tm n ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ j ↘ PB ->
|
||||
PA = PB.
|
||||
Proof.
|
||||
hauto l:on use:InterpUniv_Join', join_refl.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Bind_inv_nopf i I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||||
exists (PA : Tm 0 -> Prop),
|
||||
Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||||
exists (PA : Tm n -> Prop),
|
||||
⟦ A ⟧ i ;; I ↘ PA /\
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB).
|
||||
|
@ -365,34 +469,42 @@ Proof.
|
|||
split; hauto q:on use:InterpExt_Functional.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||||
exists (PA : Tm 0 -> Prop),
|
||||
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||||
exists (PA : Tm n -> Prop),
|
||||
⟦ A ⟧ i ↘ PA /\
|
||||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB).
|
||||
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma InterpExt_back_clos i I (A : Tm 0) PA :
|
||||
(forall j, forall a b, (RPar.R a b) -> I j b -> I j a) ->
|
||||
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
|
||||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, (RPar.R a b) ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
move => hI h.
|
||||
elim : A PA /h.
|
||||
- hauto q:on ctrs:rtc unfold:wne.
|
||||
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||||
case : p => //=.
|
||||
+ have : forall b0 b1 a, RPar.R b0 b1 -> RPar.R (App b0 a) (App b1 a)
|
||||
by hauto lq:on ctrs:RPar.R use:RPar.refl.
|
||||
+ have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a)
|
||||
by hauto lq:on ctrs:RPar'.R use:RPar'.refl.
|
||||
hauto lq:on rew:off unfold:ProdSpace.
|
||||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||||
- eauto.
|
||||
- eauto.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos i (A : Tm 0) PA :
|
||||
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
|
||||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, (rtc RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, (RPar.R a b) ->
|
||||
forall a b, (RPar'.R a b) ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
simp InterpUniv.
|
||||
|
@ -400,9 +512,9 @@ Proof.
|
|||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos_star i (A : Tm 0) PA :
|
||||
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, rtc RPar.R a b ->
|
||||
forall a b, rtc RPar'.R a b ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
move => h a b.
|
||||
|
@ -410,30 +522,101 @@ Proof.
|
|||
hauto lq:on use:InterpUniv_back_clos.
|
||||
Qed.
|
||||
|
||||
Definition ρ_ok {n} Γ (ρ : fin n -> Tm 0) := forall i m PA,
|
||||
⟦ subst_Tm ρ (Γ i) ⟧ m ↘ PA -> PA (ρ i).
|
||||
Lemma pars'_wn {n} a b :
|
||||
rtc RPar'.R a b ->
|
||||
@wn n b ->
|
||||
wn a.
|
||||
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
|
||||
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists m PA, ⟦ subst_Tm ρ A ⟧ m ↘ PA /\ PA (subst_Tm ρ a).
|
||||
(* P identifies a set of "reducibility candidates" *)
|
||||
Definition CR {n} (P : Tm n -> Prop) :=
|
||||
(forall a, P a -> wn a) /\
|
||||
(forall a, ne a -> P a).
|
||||
|
||||
Lemma adequacy_ext i n I A PA
|
||||
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
|
||||
(hI : forall j, j < i -> CR (I j))
|
||||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ PA) :
|
||||
CR PA /\ wn A.
|
||||
Proof.
|
||||
elim : A PA / h.
|
||||
- hauto unfold:wne use:wne_wn.
|
||||
- move => p A B PA PF hA hPA hTot hRes ihPF.
|
||||
rewrite /CR.
|
||||
have hb : PA Bot by firstorder.
|
||||
repeat split.
|
||||
+ case : p => /=.
|
||||
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
|
||||
* rewrite /SumSpace => a []; first by eauto with nfne.
|
||||
move => [q0][q1]*.
|
||||
have : wn q0 /\ wn q1 by hauto q:on.
|
||||
qauto l:on use:wn_pair, pars'_wn.
|
||||
+ case : p => /=.
|
||||
* rewrite /ProdSpace.
|
||||
move => a ha c PB hc hPB.
|
||||
have hc' : wn c by sfirstorder.
|
||||
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
|
||||
have h : (forall a, ne a -> PB a) by sfirstorder.
|
||||
suff : (forall a, wne a -> PB a) by hauto l:on.
|
||||
move => a0 [a1 [h0 h1]].
|
||||
eapply InterpExt_back_clos_star with (b := a1); eauto.
|
||||
* rewrite /SumSpace.
|
||||
move => a ha. left.
|
||||
sfirstorder ctrs:rtc.
|
||||
+ have wnA : wn A by firstorder.
|
||||
apply wn_bind => //.
|
||||
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
|
||||
hauto lq:on.
|
||||
- hauto l:on.
|
||||
- hauto lq:on rew:off ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma adequacy i n A PA
|
||||
(h : ⟦ A : Tm n ⟧ i ↘ PA) :
|
||||
CR PA /\ wn A.
|
||||
Proof.
|
||||
move : i A PA h.
|
||||
elim /Wf_nat.lt_wf_ind => i ih A PA.
|
||||
simp InterpUniv.
|
||||
apply adequacy_ext.
|
||||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||||
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
|
||||
Qed.
|
||||
|
||||
Lemma adequacy_wne i n A PA a : ⟦ A : Tm n ⟧ i ↘ PA -> wne a -> PA a.
|
||||
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
|
||||
|
||||
Lemma adequacy_wn i n A PA (h : ⟦ A : Tm n ⟧ i ↘ PA) a : PA a -> wn a.
|
||||
Proof. hauto q:on use:adequacy. Qed.
|
||||
|
||||
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
|
||||
⟦ subst_Tm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i).
|
||||
|
||||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a).
|
||||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||||
|
||||
(* Semantic context wellformedness *)
|
||||
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j.
|
||||
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
|
||||
|
||||
Lemma ρ_ok_nil ρ :
|
||||
ρ_ok null ρ.
|
||||
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
|
||||
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
|
||||
ρ_ok Γ (fun _ => Bot).
|
||||
Proof.
|
||||
rewrite /ρ_ok.
|
||||
hauto q:on use:adequacy.
|
||||
Qed.
|
||||
|
||||
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
|
||||
⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a ->
|
||||
ρ_ok Γ ρ ->
|
||||
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) ((scons a ρ)).
|
||||
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ).
|
||||
Proof.
|
||||
move => h0 h1 h2.
|
||||
rewrite /ρ_ok.
|
||||
move => j.
|
||||
destruct j as [j|].
|
||||
- move => m PA0. asimpl => ?.
|
||||
asimpl.
|
||||
firstorder.
|
||||
- move => m PA0. asimpl => h3.
|
||||
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
|
||||
|
@ -455,7 +638,7 @@ Proof.
|
|||
rewrite /ρ_ok in hρ.
|
||||
move => h.
|
||||
rewrite /funcomp.
|
||||
apply hρ with (m := m').
|
||||
apply hρ with (k := m').
|
||||
move : h. rewrite -hξ.
|
||||
by asimpl.
|
||||
Qed.
|
||||
|
@ -480,6 +663,17 @@ Proof.
|
|||
hauto lq:on inv:option unfold:renaming_ok.
|
||||
Qed.
|
||||
|
||||
Lemma SemWt_Wn n Γ (a : Tm n) A :
|
||||
Γ ⊨ a ∈ A ->
|
||||
wn a /\ wn A.
|
||||
Proof.
|
||||
move => h.
|
||||
have {}/h := ρ_ok_bot _ Γ => h.
|
||||
have h0 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) A) by hauto l:on use:adequacy.
|
||||
have h1 : wn (subst_Tm (fun _ : fin n => (Bot : Tm 0)) a)by hauto l:on use:adequacy_wn.
|
||||
move {h}. hauto lq:on use:wn_antirenaming.
|
||||
Qed.
|
||||
|
||||
Lemma SemWt_Univ n Γ (A : Tm n) i :
|
||||
Γ ⊨ A ∈ Univ i <->
|
||||
forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_Tm ρ A ⟧ i ↘ S.
|
||||
|
@ -572,7 +766,7 @@ Proof.
|
|||
intros (m & PB0 & hPB0 & hPB0').
|
||||
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
|
||||
apply : InterpUniv_back_clos; eauto.
|
||||
apply : RPar.AppAbs'; eauto using RPar.refl.
|
||||
apply : RPar'.AppAbs'; eauto using RPar'.refl.
|
||||
by asimpl.
|
||||
Qed.
|
||||
|
||||
|
@ -604,7 +798,7 @@ Proof.
|
|||
simpl in hPPi.
|
||||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||||
rewrite /SumSpace.
|
||||
rewrite /SumSpace. right.
|
||||
exists (subst_Tm ρ a), (subst_Tm ρ b).
|
||||
split.
|
||||
- hauto l:on use:Pars.substing.
|
||||
|
@ -626,24 +820,25 @@ Proof.
|
|||
move : h0 => [S][h2][h3]?. subst.
|
||||
move : h1 => /=.
|
||||
rewrite /SumSpace.
|
||||
case; first by hauto lq:on use:adequacy_wne, wne_proj.
|
||||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||||
exists m, S. split => //=.
|
||||
have {}h4 : rtc RPar.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars.ProjCong.
|
||||
have ? : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.refl, RPar.ProjPair'.
|
||||
have : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPars'.ProjCong.
|
||||
have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'.
|
||||
have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
move => h.
|
||||
apply : InterpUniv_back_clos_star; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma substing_RPar n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
RPar.R B C ->
|
||||
RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. hauto lq:on inv:option use:RPar.morphing, RPar.refl. Qed.
|
||||
Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
RPar'.R B C ->
|
||||
RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed.
|
||||
|
||||
Lemma substing_RPars n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
rtc RPar.R B C ->
|
||||
rtc RPar.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar. Qed.
|
||||
Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||||
rtc RPar'.R B C ->
|
||||
rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||||
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed.
|
||||
|
||||
Lemma ST_Proj2 n Γ (a : Tm n) A B :
|
||||
Γ ⊨ a ∈ TBind TSig A B ->
|
||||
|
@ -654,17 +849,155 @@ Proof.
|
|||
move : h0 => [S][h2][h3]?. subst.
|
||||
move : h1 => /=.
|
||||
rewrite /SumSpace.
|
||||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||||
specialize h3 with (1 := h5).
|
||||
move : h3 => [PB hPB].
|
||||
have hr : forall p, rtc RPar.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars.ProjCong.
|
||||
have hrl : RPar.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar.ProjPair', RPar.refl.
|
||||
have hrr : RPar.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar.ProjPair', RPar.refl.
|
||||
exists m, PB.
|
||||
asimpl. split.
|
||||
- have h : rtc RPar.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h : rtc RPar.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPars.
|
||||
move : hPB. asimpl.
|
||||
eauto using InterpUnivN_back_preservation_star.
|
||||
- hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
|
||||
case.
|
||||
- move => h.
|
||||
have hp : forall p, wne (Proj p (subst_Tm ρ a)) by auto using wne_proj.
|
||||
have hp0 := hp PL. have hp1 := hp PR => {hp}.
|
||||
have : S (Proj PL (subst_Tm ρ a)) by hauto q:on use:adequacy_wne.
|
||||
move /h3 => [PB]. asimpl. hauto lq:on use:adequacy_wne.
|
||||
- move => [a0 [b0 [h4 [h5 h6]]]].
|
||||
specialize h3 with (1 := h5).
|
||||
move : h3 => [PB hPB].
|
||||
have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPars'.ProjCong.
|
||||
have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||||
have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||||
exists m, PB.
|
||||
asimpl. split.
|
||||
+ have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||||
have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's.
|
||||
move : hPB. asimpl.
|
||||
eauto using InterpUnivN_back_preservation_star.
|
||||
+ hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
|
||||
Qed.
|
||||
|
||||
Lemma ne_nf_preservation n (a b : Tm n) : ERed.R b a -> (ne a -> ne b) /\ (nf a -> nf b).
|
||||
Proof.
|
||||
move => h. elim : n b a /h => //=.
|
||||
- move => n a.
|
||||
split => //=.
|
||||
hauto lqb:on use:ne_nf_ren db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
- hauto lqb:on db:nfne.
|
||||
Qed.
|
||||
|
||||
Fixpoint size_tm {n} (a : Tm n) :=
|
||||
match a with
|
||||
| VarTm _ => 1
|
||||
| TBind _ A B => 1 + Nat.add (size_tm A) (size_tm B)
|
||||
| Abs a => 1 + size_tm a
|
||||
| App a b => 1 + Nat.add (size_tm a) (size_tm b)
|
||||
| Proj p a => 1 + size_tm a
|
||||
| Pair a b => 1 + Nat.add (size_tm a) (size_tm b)
|
||||
| Bot => 1
|
||||
| Univ _ => 1
|
||||
end.
|
||||
|
||||
Lemma size_tm_ren n m (ξ : fin n -> fin m) a : size_tm (ren_Tm ξ a) = size_tm a.
|
||||
Proof.
|
||||
move : m ξ. elim : n / a => //=; scongruence.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Rewrite size_tm_ren : size_tm.
|
||||
|
||||
Lemma size_η_lt n (a b : Tm n) :
|
||||
ERed.R b a ->
|
||||
size_tm b < size_tm a.
|
||||
Proof.
|
||||
move => h. elim : b a / h => //=; hauto l:on rew:db:size_tm.
|
||||
Qed.
|
||||
|
||||
Lemma ered_local_confluence n (a b c : Tm n) :
|
||||
ERed.R b a ->
|
||||
ERed.R c a ->
|
||||
exists d, rtc ERed.R d b /\ rtc ERed.R d c.
|
||||
Proof.
|
||||
move => h. move : c.
|
||||
elim : n b a / h => n.
|
||||
- move => a c.
|
||||
elim /ERed.inv => //= _.
|
||||
+ move => ? ? [*]. subst.
|
||||
have : subst_Tm (scons Bot VarTm) (ren_Tm shift c) = (subst_Tm (scons Bot VarTm) (ren_Tm shift a))
|
||||
by congruence.
|
||||
asimpl => ?. subst.
|
||||
eauto using rtc_refl.
|
||||
+ move => a0 a1 ha ? [*]. subst.
|
||||
elim /ERed.inv : ha => //= _.
|
||||
* move => a1 a2 b0 ha ? [*]. subst.
|
||||
have [a2 [h0 h1]] : exists a2, ERed.R a2 a /\ a1 = ren_Tm shift a2 by admit. subst.
|
||||
eexists. split; cycle 1.
|
||||
apply : relations.rtc_r; cycle 1.
|
||||
apply ERed.AppEta.
|
||||
apply rtc_refl.
|
||||
eauto using relations.rtc_once.
|
||||
* hauto q:on ctrs:rtc, ERed.R inv:ERed.R.
|
||||
- move => a c ha.
|
||||
elim /ERed.inv : ha => //= _.
|
||||
+ hauto l:on.
|
||||
+ move => a0 a1 b0 ha ? [*]. subst.
|
||||
elim /ERed.inv : ha => //= _.
|
||||
move => p a1 a2 ha ? [*]. subst.
|
||||
exists a1. split. by apply relations.rtc_once.
|
||||
apply : rtc_l. apply ERed.PairEta.
|
||||
apply : rtc_l. apply ERed.PairCong1. eauto using ERed.ProjCong.
|
||||
apply rtc_refl.
|
||||
+ move => a0 b0 b1 ha ? [*]. subst.
|
||||
elim /ERed.inv : ha => //= _ p a0 a1 h ? [*]. subst.
|
||||
exists a0. split; first by apply relations.rtc_once.
|
||||
apply : rtc_l; first by apply ERed.PairEta.
|
||||
apply relations.rtc_once.
|
||||
hauto lq:on ctrs:ERed.R.
|
||||
- move => a0 a1 ha iha c.
|
||||
elim /ERed.inv => //= _.
|
||||
+ move => a2 ? [*]. subst.
|
||||
elim /ERed.inv : ha => //=_.
|
||||
* move => a1 a2 b0 ha ? [*] {iha}. subst.
|
||||
have [a0 [h0 h1]] : exists a0, ERed.R a0 c /\ a1 = ren_Tm shift a0 by admit. subst.
|
||||
exists a0. split; last by apply relations.rtc_once.
|
||||
apply relations.rtc_once. apply ERed.AppEta.
|
||||
* hauto q:on inv:ERed.R.
|
||||
+ hauto l:on use:EReds.AbsCong.
|
||||
- move => a0 a1 b ha iha c.
|
||||
elim /ERed.inv => //= _.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
|
||||
+ hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
|
||||
- move => a b0 b1 hb ihb c.
|
||||
elim /ERed.inv => //=_.
|
||||
+ move => a0 a1 a2 ha ? [*]. subst.
|
||||
move {ihb}. exists (App a0 b0).
|
||||
hauto lq:on use:@relations.rtc_once ctrs:ERed.R.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.AppCong.
|
||||
- move => a0 a1 b ha iha c.
|
||||
elim /ERed.inv => //= _.
|
||||
+ move => ? ?[*]. subst.
|
||||
elim /ERed.inv : ha => //= _ p a1 a2 h ? [*]. subst.
|
||||
exists a1. split; last by apply relations.rtc_once.
|
||||
apply : rtc_l. apply ERed.PairEta.
|
||||
apply relations.rtc_once. hauto lq:on ctrs:ERed.R.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
|
||||
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
|
||||
- move => a b0 b1 hb hc c. elim /ERed.inv => //= _.
|
||||
+ move => ? ? [*]. subst.
|
||||
elim /ERed.inv : hb => //= _ p a0 a1 ha ? [*]. subst.
|
||||
move {hc}.
|
||||
exists a0. split; last by apply relations.rtc_once.
|
||||
apply : rtc_l; first by apply ERed.PairEta.
|
||||
hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
|
||||
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.PairCong.
|
||||
- qauto l:on inv:ERed.R use:EReds.ProjCong.
|
||||
- move => p A0 A1 B hA ihA.
|
||||
move => c. elim/ERed.inv => //=.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
|
||||
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
|
||||
- move => p A B0 B1 hB ihB c.
|
||||
elim /ERed.inv => //=.
|
||||
+ hauto lq:on ctrs:ERed.R use:@relations.rtc_once.
|
||||
+ hauto lq:on ctrs:rtc use:EReds.BindCong.
|
||||
Admitted.
|
||||
|
|
Loading…
Add table
Reference in a new issue