Add prov_antiren

This commit is contained in:
Yiyun Liu 2025-01-04 00:45:42 -05:00
parent 9a52ab334f
commit f699ce2d4f

View file

@ -1068,8 +1068,8 @@ Definition prov_univ {n} i0 (a : Tm n) :=
prov h (App a b) := prov h a; prov h (App a b) := prov h a;
prov h (Pair a b) := prov h a /\ prov h b; prov h (Pair a b) := prov h a /\ prov h b;
prov h (Proj p a) := prov h a; prov h (Proj p a) := prov h a;
prov h Bot := False; prov h Bot := h = Bot;
prov h (VarTm _) := False; prov h (VarTm i) := h = VarTm i;
prov h (Univ i) := prov_univ i h . prov h (Univ i) := prov_univ i h .
#[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := #[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
@ -1099,21 +1099,6 @@ Proof.
- sfirstorder. - sfirstorder.
Qed. Qed.
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
Proof.
move => ih.
suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder.
elim.
- move => n a h.
apply ih. lia.
- move => n ih0 m a h.
apply : ih.
move => m0 b h0.
apply : ih0.
lia.
Qed.
Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a : Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a :
prov_bind p A B a -> prov_bind p A B a ->
prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
@ -1126,7 +1111,7 @@ Lemma prov_ren n m (ξ : fin n -> fin m) h a :
prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a). prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a).
Proof. Proof.
move : m ξ h. elim : n / a. move : m ξ h. elim : n / a.
- sfirstorder rew:db:prov. - hauto q:on rew:db:prov.
- move => n a ih m ξ h. - move => n a ih m ξ h.
simp prov. simp prov.
move /ih => {ih}. move /ih => {ih}.
@ -1140,60 +1125,33 @@ Proof.
- qauto l:on rew:db:prov. - qauto l:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- hauto l:on use:prov_bind_ren rew:db:prov. - hauto l:on use:prov_bind_ren rew:db:prov.
- sfirstorder.
- hauto l:on inv:Tm rew:db:prov.
Qed.
Definition hfb {n} (a : Tm n) :=
match a with
| TBind _ _ _ => true
| Univ _ => true
| _ => false
end.
Lemma prov_morph n m (ρ : fin n -> Tm m) h a :
prov h a ->
hfb h ->
prov (subst_Tm ρ h) (subst_Tm ρ a).
Proof.
move : m ρ h. elim : n / a.
- hauto q:on rew:db:prov.
- move => n a ih m ρ h + hb.
simp prov => /=.
move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)).
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- hauto q:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n p A ihA B ihB m ρ h /=. simp prov => //= + h0.
case : h h0 => //=.
move => p0 A0 B0 _ [? [h1 h2]]. subst.
hauto l:on use:Pars.substing rew:db:prov.
- qauto rew:db:prov.
- hauto l:on inv:Tm rew:db:prov. - hauto l:on inv:Tm rew:db:prov.
Qed. Qed.
Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. Lemma prov_antiren n m (ξ : fin n -> fin m) h a:
Proof. move : m ξ. elim : n /u =>//=. Qed. prov (ren_Tm ξ h) a -> exists a', ren_Tm ξ a' = a /\ prov h a'.
Hint Rewrite @ren_hfb : prov.
Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b.
Proof. Proof.
move => + + h. move : u. Admitted.
(* Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. *)
(* Proof. move : m ξ. elim : n /u =>//=. Qed. *)
(* Hint Rewrite @ren_hfb : prov. *)
Lemma prov_par n (u : Tm n) a b : prov u a -> Par.R a b -> prov u b.
Proof.
move => + h. move : u.
elim : n a b /h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb u /=. - move => n a0 a1 b0 b1 ha iha hb ihb u /=.
simp prov => h h0. simp prov => h.
have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb. have [a1' [? ?]] : exists a1', ren_Tm shift a1' = a1 /\ prov u a1'
move /iha /(_ h1) : h. by eauto using prov_antiren.
move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1). subst; by asimpl.
by asimpl.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n a0 a1 ha iha A B. simp prov. move /iha. - hauto l:on use:prov_ren rew:db:prov.
hauto l:on use:prov_ren.
- hauto l:on rew:db:prov. - hauto l:on rew:db:prov.
- simp prov. - simp prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
@ -1203,21 +1161,22 @@ Proof.
- move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov. - move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov.
case : u => //=. case : u => //=.
move => p0 A B [? [h2 h3]]. subst. move => p0 A B [? [h2 h3]]. subst.
move => ?. repeat split => //=; repeat split => //=;
hauto l:on use:rtc_r rew:db:prov. hauto l:on use:rtc_r rew:db:prov.
- sfirstorder. - sfirstorder.
- sfirstorder. - sfirstorder.
Qed. Qed.
Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b. Lemma prov_pars n (u : Tm n) a b : prov u a -> rtc Par.R a b -> prov u b.
Proof. Proof.
induction 3; hauto lq:on ctrs:rtc use:prov_par. induction 2; hauto lq:on ctrs:rtc use:prov_par.
Qed. Qed.
Definition prov_extract_spec {n} u (a : Tm n) := Definition prov_extract_spec {n} u (a : Tm n) :=
match u with match u with
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
| Univ i => extract a = Univ i | Univ i => extract a = Univ i
| VarTm i => extract a = VarTm i
| _ => True | _ => True
end. end.
@ -1225,7 +1184,9 @@ Lemma prov_extract n u (a : Tm n) :
prov u a -> prov_extract_spec u a. prov u a -> prov_extract_spec u a.
Proof. Proof.
move : u. elim : n / a => //=. move : u. elim : n / a => //=.
- hauto l:on inv:Tm rew:db:prov, extract.
- move => n a ih [] //=. - move => n a ih [] //=.
+ hauto q:on rew:db:extract, prov.
+ move => p A B /=. + move => p A B /=.
simp prov. move /ih {ih}. simp prov. move /ih {ih}.
simpl. simpl.
@ -1248,6 +1209,7 @@ Proof.
- hauto inv:Tm l:on rew:db:prov, extract. - hauto inv:Tm l:on rew:db:prov, extract.
- hauto l:on inv:Tm rew:db:prov, extract. - hauto l:on inv:Tm rew:db:prov, extract.
- hauto l:on inv:Tm rew:db:prov, extract. - hauto l:on inv:Tm rew:db:prov, extract.
- hauto l:on inv:Tm rew:db:prov, extract.
Qed. Qed.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
@ -1623,7 +1585,6 @@ Lemma pars_univ_inv n i (c : Tm n) :
Proof. Proof.
have : prov (Univ i) (Univ i : Tm n) by sfirstorder. have : prov (Univ i) (Univ i : Tm n) by sfirstorder.
move : prov_pars. repeat move/[apply]. move : prov_pars. repeat move/[apply].
move /(_ ltac:(reflexivity)).
by move/prov_extract. by move/prov_extract.
Qed. Qed.
@ -1634,7 +1595,6 @@ Lemma pars_pi_inv n p (A : Tm n) B C :
Proof. Proof.
have : prov (TBind p A B) (TBind p A B) by sfirstorder. have : prov (TBind p A B) (TBind p A B) by sfirstorder.
move : prov_pars. repeat move/[apply]. move : prov_pars. repeat move/[apply].
move /(_ eq_refl).
by move /prov_extract. by move /prov_extract.
Qed. Qed.