diff --git a/theories/fp_red.v b/theories/fp_red.v index 04b0263..ff65521 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1068,8 +1068,8 @@ Definition prov_univ {n} i0 (a : Tm n) := prov h (App a b) := prov h a; prov h (Pair a b) := prov h a /\ prov h b; prov h (Proj p a) := prov h a; - prov h Bot := False; - prov h (VarTm _) := False; + prov h Bot := h = Bot; + prov h (VarTm i) := h = VarTm i; prov h (Univ i) := prov_univ i h . #[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := @@ -1099,21 +1099,6 @@ Proof. - sfirstorder. Qed. -Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : - (forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a. -Proof. - move => ih. - suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder. - elim. - - move => n a h. - apply ih. lia. - - move => n ih0 m a h. - apply : ih. - move => m0 b h0. - apply : ih0. - lia. -Qed. - Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a : prov_bind p A B a -> prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). @@ -1126,7 +1111,7 @@ Lemma prov_ren n m (ξ : fin n -> fin m) h a : prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a). Proof. move : m ξ h. elim : n / a. - - sfirstorder rew:db:prov. + - hauto q:on rew:db:prov. - move => n a ih m ξ h. simp prov. move /ih => {ih}. @@ -1140,60 +1125,33 @@ Proof. - qauto l:on rew:db:prov. - hauto lq:on rew:db:prov. - hauto l:on use:prov_bind_ren rew:db:prov. - - sfirstorder. - - hauto l:on inv:Tm rew:db:prov. -Qed. - -Definition hfb {n} (a : Tm n) := - match a with - | TBind _ _ _ => true - | Univ _ => true - | _ => false - end. - -Lemma prov_morph n m (ρ : fin n -> Tm m) h a : - prov h a -> - hfb h -> - prov (subst_Tm ρ h) (subst_Tm ρ a). -Proof. - move : m ρ h. elim : n / a. - - hauto q:on rew:db:prov. - - move => n a ih m ρ h + hb. - simp prov => /=. - move /ih => {ih}. - move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)). - simp prov. by asimpl. - - hauto q:on rew:db:prov. - - hauto q:on rew:db:prov. - hauto lq:on rew:db:prov. - - move => n p A ihA B ihB m ρ h /=. simp prov => //= + h0. - case : h h0 => //=. - move => p0 A0 B0 _ [? [h1 h2]]. subst. - hauto l:on use:Pars.substing rew:db:prov. - - qauto rew:db:prov. - hauto l:on inv:Tm rew:db:prov. Qed. -Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. -Proof. move : m ξ. elim : n /u =>//=. Qed. - -Hint Rewrite @ren_hfb : prov. - -Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b. +Lemma prov_antiren n m (ξ : fin n -> fin m) h a: + prov (ren_Tm ξ h) a -> exists a', ren_Tm ξ a' = a /\ prov h a'. Proof. - move => + + h. move : u. +Admitted. + +(* Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. *) +(* Proof. move : m ξ. elim : n /u =>//=. Qed. *) + +(* Hint Rewrite @ren_hfb : prov. *) + +Lemma prov_par n (u : Tm n) a b : prov u a -> Par.R a b -> prov u b. +Proof. + move => + h. move : u. elim : n a b /h. - move => n a0 a1 b0 b1 ha iha hb ihb u /=. - simp prov => h h0. - have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb. - move /iha /(_ h1) : h. - move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1). - by asimpl. + simp prov => h. + have [a1' [? ?]] : exists a1', ren_Tm shift a1' = a1 /\ prov u a1' + by eauto using prov_antiren. + subst; by asimpl. - hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov. - - move => n a0 a1 ha iha A B. simp prov. move /iha. - hauto l:on use:prov_ren. + - hauto l:on use:prov_ren rew:db:prov. - hauto l:on rew:db:prov. - simp prov. - hauto lq:on rew:db:prov. @@ -1203,21 +1161,22 @@ Proof. - move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov. case : u => //=. move => p0 A B [? [h2 h3]]. subst. - move => ?. repeat split => //=; + repeat split => //=; hauto l:on use:rtc_r rew:db:prov. - sfirstorder. - sfirstorder. Qed. -Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b. +Lemma prov_pars n (u : Tm n) a b : prov u a -> rtc Par.R a b -> prov u b. Proof. - induction 3; hauto lq:on ctrs:rtc use:prov_par. + induction 2; hauto lq:on ctrs:rtc use:prov_par. Qed. Definition prov_extract_spec {n} u (a : Tm n) := match u with | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 | Univ i => extract a = Univ i + | VarTm i => extract a = VarTm i | _ => True end. @@ -1225,7 +1184,9 @@ Lemma prov_extract n u (a : Tm n) : prov u a -> prov_extract_spec u a. Proof. move : u. elim : n / a => //=. + - hauto l:on inv:Tm rew:db:prov, extract. - move => n a ih [] //=. + + hauto q:on rew:db:extract, prov. + move => p A B /=. simp prov. move /ih {ih}. simpl. @@ -1248,6 +1209,7 @@ Proof. - hauto inv:Tm l:on rew:db:prov, extract. - hauto l:on inv:Tm rew:db:prov, extract. - hauto l:on inv:Tm rew:db:prov, extract. + - hauto l:on inv:Tm rew:db:prov, extract. Qed. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. @@ -1623,7 +1585,6 @@ Lemma pars_univ_inv n i (c : Tm n) : Proof. have : prov (Univ i) (Univ i : Tm n) by sfirstorder. move : prov_pars. repeat move/[apply]. - move /(_ ltac:(reflexivity)). by move/prov_extract. Qed. @@ -1634,7 +1595,6 @@ Lemma pars_pi_inv n p (A : Tm n) B C : Proof. have : prov (TBind p A B) (TBind p A B) by sfirstorder. move : prov_pars. repeat move/[apply]. - move /(_ eq_refl). by move /prov_extract. Qed.