Add join pi inj

This commit is contained in:
Yiyun Liu 2024-12-25 20:15:55 -05:00
parent 98a11fb7ac
commit e2702ed277

View file

@ -72,6 +72,7 @@ Module Par.
R A0 A1 -> R A0 A1 ->
R B0 B1 -> R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1) R (Pi A0 B0) (Pi A1 B1)
(* Bot is useful for making the prov function computable *)
| BotCong : | BotCong :
R Bot Bot. R Bot Bot.
@ -1163,27 +1164,6 @@ Proof.
- qauto l:on rew:db:prov, extract. - qauto l:on rew:db:prov, extract.
Qed. Qed.
Lemma pi_inv n (A : Tm n) B C :
rtc Par.R (Pi A B) C ->
exists A0 B0, extract C = Pi A0 B0 /\
rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
have : prov A B (Pi A B) by sfirstorder.
move : prov_pars. repeat move/[apply].
by move /prov_extract.
Qed.
Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C :
rtc Par.R (Pi A0 B0) C ->
rtc Par.R (Pi A1 B1) C ->
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
Proof.
move /pi_inv => [A2 [B2 [? [h0 h1]]]].
move /pi_inv => [A3 [B3 [? [h2 h3]]]].
exists A2, B2. hauto l:on.
Qed.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof. Proof.
move => h. elim : n a b /h; qauto ctrs:Par.R. move => h. elim : n a b /h; qauto ctrs:Par.R.
@ -1549,3 +1529,53 @@ Proof.
move : h; repeat move/[apply]. move : h; repeat move/[apply].
hauto lq:on use:rtc_union. hauto lq:on use:rtc_union.
Qed. Qed.
Definition join {n} (a b : Tm n) :=
exists c, rtc Par.R a c /\ rtc Par.R b c.
Lemma join_transitive n (a b c : Tm n) :
join a b -> join b c -> join a c.
Proof.
rewrite /join.
move => [ab [h0 h1]] [bc [h2 h3]].
move : Par_confluent h1 h2; repeat move/[apply].
move => [abc [h4 h5]].
eauto using relations.rtc_transitive.
Qed.
Lemma join_symmetric n (a b : Tm n) :
join a b -> join b a.
Proof. sfirstorder unfold:join. Qed.
Lemma join_refl n (a : Tm n) : join a a.
Proof. hauto lq:on ctrs:rtc unfold:join. Qed.
Lemma pars_pi_inv n (A : Tm n) B C :
rtc Par.R (Pi A B) C ->
exists A0 B0, extract C = Pi A0 B0 /\
rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
have : prov A B (Pi A B) by sfirstorder.
move : prov_pars. repeat move/[apply].
by move /prov_extract.
Qed.
Lemma pars_pi_inj n (A0 A1 : Tm n) B0 B1 C :
rtc Par.R (Pi A0 B0) C ->
rtc Par.R (Pi A1 B1) C ->
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
Proof.
move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]].
move /pars_pi_inv => [A3 [B3 [? [h2 h3]]]].
exists A2, B2. hauto l:on.
Qed.
Lemma join_pi_inj n (A0 A1 : Tm n) B0 B1 :
join (Pi A0 B0) (Pi A1 B1) ->
join A0 A1 /\ join B0 B1.
Proof.
move => [c []].
move : pars_pi_inj; repeat move/[apply].
sfirstorder unfold:join.
Qed.