From e2702ed2778decb181ef65f2501c4054701746b4 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Wed, 25 Dec 2024 20:15:55 -0500 Subject: [PATCH] Add join pi inj --- theories/fp_red.v | 72 +++++++++++++++++++++++++++++++++-------------- 1 file changed, 51 insertions(+), 21 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index a29d39c..902c733 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -72,6 +72,7 @@ Module Par. R A0 A1 -> R B0 B1 -> R (Pi A0 B0) (Pi A1 B1) + (* Bot is useful for making the prov function computable *) | BotCong : R Bot Bot. @@ -1163,27 +1164,6 @@ Proof. - qauto l:on rew:db:prov, extract. Qed. -Lemma pi_inv n (A : Tm n) B C : - rtc Par.R (Pi A B) C -> - exists A0 B0, extract C = Pi A0 B0 /\ - rtc Par.R A A0 /\ rtc Par.R B B0. -Proof. - have : prov A B (Pi A B) by sfirstorder. - move : prov_pars. repeat move/[apply]. - by move /prov_extract. -Qed. - -Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C : - rtc Par.R (Pi A0 B0) C -> - rtc Par.R (Pi A1 B1) C -> - exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ - rtc Par.R B0 B2 /\ rtc Par.R B1 B2. -Proof. - move /pi_inv => [A2 [B2 [? [h0 h1]]]]. - move /pi_inv => [A3 [B3 [? [h2 h3]]]]. - exists A2, B2. hauto l:on. -Qed. - Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; qauto ctrs:Par.R. @@ -1549,3 +1529,53 @@ Proof. move : h; repeat move/[apply]. hauto lq:on use:rtc_union. Qed. + +Definition join {n} (a b : Tm n) := + exists c, rtc Par.R a c /\ rtc Par.R b c. + +Lemma join_transitive n (a b c : Tm n) : + join a b -> join b c -> join a c. +Proof. + rewrite /join. + move => [ab [h0 h1]] [bc [h2 h3]]. + move : Par_confluent h1 h2; repeat move/[apply]. + move => [abc [h4 h5]]. + eauto using relations.rtc_transitive. +Qed. + +Lemma join_symmetric n (a b : Tm n) : + join a b -> join b a. +Proof. sfirstorder unfold:join. Qed. + +Lemma join_refl n (a : Tm n) : join a a. +Proof. hauto lq:on ctrs:rtc unfold:join. Qed. + +Lemma pars_pi_inv n (A : Tm n) B C : + rtc Par.R (Pi A B) C -> + exists A0 B0, extract C = Pi A0 B0 /\ + rtc Par.R A A0 /\ rtc Par.R B B0. +Proof. + have : prov A B (Pi A B) by sfirstorder. + move : prov_pars. repeat move/[apply]. + by move /prov_extract. +Qed. + +Lemma pars_pi_inj n (A0 A1 : Tm n) B0 B1 C : + rtc Par.R (Pi A0 B0) C -> + rtc Par.R (Pi A1 B1) C -> + exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ + rtc Par.R B0 B2 /\ rtc Par.R B1 B2. +Proof. + move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]]. + move /pars_pi_inv => [A3 [B3 [? [h2 h3]]]]. + exists A2, B2. hauto l:on. +Qed. + +Lemma join_pi_inj n (A0 A1 : Tm n) B0 B1 : + join (Pi A0 B0) (Pi A1 B1) -> + join A0 A1 /\ join B0 B1. +Proof. + move => [c []]. + move : pars_pi_inj; repeat move/[apply]. + sfirstorder unfold:join. +Qed.