Add abs and paircong

This commit is contained in:
Yiyun Liu 2024-12-25 17:55:47 -05:00
parent ff0a54aaae
commit a6f89ef7f7

View file

@ -1220,6 +1220,21 @@ Module ERPar.
sfirstorder use:RPar.refl, EPar.refl. sfirstorder use:RPar.refl, EPar.refl.
Qed. Qed.
Lemma AbsCong n (a0 a1 : Tm (S n)) :
R a0 a1 ->
rtc R (Abs a0) (Abs a1).
Proof.
move => [].
- move => h.
apply rtc_once.
left.
by apply RPar.AbsCong.
- move => h.
apply rtc_once.
right.
by apply EPar.AbsCong.
Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) : Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
R a0 a1 -> R a0 a1 ->
R b0 b1 -> R b0 b1 ->
@ -1240,9 +1255,29 @@ Module ERPar.
- sfirstorder use:EPar.AppCong, @rtc_once. - sfirstorder use:EPar.AppCong, @rtc_once.
Qed. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
rtc R (Pair a0 b0) (Pair a1 b1).
Proof.
move => [] + [].
- sfirstorder use:RPar.PairCong, @rtc_once.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PairCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PairCong, EPar.refl.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PairCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PairCong, EPar.refl.
- sfirstorder use:EPar.PairCong, @rtc_once.
Qed.
End ERPar. End ERPar.
Hint Resolve ERPar.AppCong ERPar.refl : erpar. Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong : erpar.
Module ERPars. Module ERPars.
#[local]Ltac solve_s_rec := #[local]Ltac solve_s_rec :=
@ -1251,13 +1286,23 @@ Module ERPars.
#[local]Ltac solve_s := #[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl. repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) : Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc ERPar.R a0 a1 -> rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 -> rtc ERPar.R b0 b1 ->
rtc ERPar.R (App a0 b0) (App a1 b1). rtc ERPar.R (App a0 b0) (App a1 b1).
solve_s. Proof. solve_s. Qed.
Qed.
Lemma AbsCong n (a0 a1 : Tm (S n)) :
rtc ERPar.R a0 a1 ->
rtc ERPar.R (Abs a0) (Abs a1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 ->
rtc ERPar.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
End ERPars. End ERPars.
Lemma ERPar_Par n (a b : Tm n) : ERPar.R a b -> Par.R a b. Lemma ERPar_Par n (a b : Tm n) : ERPar.R a b -> Par.R a b.
@ -1278,12 +1323,11 @@ Proof.
apply : relations.rtc_transitive; eauto. apply : relations.rtc_transitive; eauto.
apply rtc_once. apply ERPar.RPar. apply rtc_once. apply ERPar.RPar.
by apply RPar.AppAbs; eauto using RPar.refl. by apply RPar.AppAbs; eauto using RPar.refl.
(* congruence *) eauto using ERPars.AppCong,ERPars.AbsCong.
admit.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc.
apply : rtc_l. apply ERPar.RPar. apply : rtc_l. apply ERPar.RPar.
apply RPar.AppPair; eauto using RPar.refl. apply RPar.AppPair; eauto using RPar.refl.
admit. sfirstorder use:ERPars.AppCong, ERPars.PairCong.
- move => n p a0 a1 ha iha. - move => n p a0 a1 ha iha.
apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl.
admit. admit.
@ -1297,7 +1341,7 @@ Proof.
apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl. apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl.
admit. admit.
- sfirstorder. - sfirstorder.
- admit. - sfirstorder use:ERPars.AbsCong.
- sfirstorder use:ERPars.AppCong. - sfirstorder use:ERPars.AppCong.
- admit. - admit.
- admit. - admit.