pair-eta/theories/fp_red.v
2024-12-25 17:55:47 -05:00

1499 lines
45 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From Ltac2 Require Ltac2.
Import Ltac2.Notations.
Import Ltac2.Control.
Require Import ssreflect.
Require Import FunInd.
Require Import Arith.Wf_nat.
Require Import Psatz.
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
From Equations Require Import Equations.
Ltac2 spec_refl () :=
List.iter
(fun a => match a with
| (i, _, _) =>
let h := Control.hyp i in
try (specialize $h with (1 := eq_refl))
end) (Control.hyps ()).
Ltac spec_refl := ltac2:(spec_refl ()).
(* Trying my best to not write C style module_funcname *)
Module Par.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
| ProjPair p a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj PL a1) (Proj PR a1))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
Lemma refl n (a : Tm n) : R a a.
elim : n /a; hauto ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : match goal with
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
| _ => qauto ctrs:R use:ProjPair'
end.
Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => + h. move : m ρ0 ρ1. elim : n a b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=.
eapply AppAbs' with (a1 := subst_Tm (up_Tm_Tm ρ1) a1); eauto.
by asimpl.
hauto l:on use:renaming inv:option.
- hauto lq:on rew:off ctrs:R.
- hauto l:on inv:option use:renaming ctrs:R.
- hauto lq:on use:ProjPair'.
- move => n a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- sfirstorder.
- hauto l:on inv:option ctrs:R use:renaming.
- hauto q:on ctrs:R.
- qauto l:on ctrs:R.
- qauto l:on ctrs:R.
- hauto l:on inv:option ctrs:R use:renaming.
- sfirstorder.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b -> R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) :
R (ren_Tm ξ a) b -> exists b0, R a b0 /\ ren_Tm ξ b0 = b.
Proof.
move E : (ren_Tm ξ a) => u h.
move : n ξ a E. elim : m u b/h.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=.
move => c c0 [+ ?]. subst.
case : c => //=.
move => c [?]. subst.
spec_refl.
move : iha => [c1][ih0]?. subst.
move : ihb => [c2][ih1]?. subst.
eexists. split.
apply AppAbs; eauto.
by asimpl.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=.
move => []//= t t0 t1 [*]. subst.
spec_refl.
move : iha => [? [*]].
move : ihb => [? [*]].
move : ihc => [? [*]].
eexists. split.
apply AppPair; hauto. subst.
by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply ProjAbs; eauto. by asimpl.
- move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*].
subst. spec_refl.
move : iha => [b0 [? ?]].
move : ihb => [c0 [? ?]]. subst.
eexists. split. by eauto using ProjPair.
hauto q:on.
- move => n a0 a1 ha iha m ξ a ?. subst.
spec_refl. move : iha => [a0 [? ?]]. subst.
eexists. split. apply AppEta; eauto.
by asimpl.
- move => n a0 a1 ha iha m ξ a ?. subst.
spec_refl. move : iha => [b0 [? ?]]. subst.
eexists. split. apply PairEta; eauto.
by asimpl.
- move => n i m ξ []//=.
hauto l:on.
- move => n a0 a1 ha iha m ξ []//= t [*]. subst.
spec_refl.
move :iha => [b0 [? ?]]. subst.
eexists. split. by apply AbsCong; eauto.
by asimpl.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply AppCong; eauto.
done.
- move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
move : ihb => [c0 [? ?]]. subst.
eexists. split. by apply PairCong; eauto.
by asimpl.
- move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst.
spec_refl.
move : iha => [b0 [? ?]]. subst.
eexists. split. by apply ProjCong; eauto.
by asimpl.
- move => n A0 A1 B0 B1 ha iha hB ihB m ξ []//= t t0 [*]. subst.
spec_refl.
move : iha => [b0 [? ?]].
move : ihB => [c0 [? ?]]. subst.
eexists. split. by apply PiCong; eauto.
by asimpl.
- hauto lq:on rew:off inv:Tm.
Qed.
End Par.
Module Pars.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
rtc Par.R a b -> rtc Par.R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
induction 1; hauto lq:on ctrs:rtc use:Par.renaming.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc Par.R a b ->
rtc Par.R (subst_Tm ρ a) (subst_Tm ρ b).
induction 1; hauto l:on ctrs:rtc use:Par.substing.
Qed.
Lemma antirenaming n m (a : Tm n) (b : Tm m) (ξ : fin n -> fin m) :
rtc Par.R (ren_Tm ξ a) b -> exists b0, rtc Par.R a b0 /\ ren_Tm ξ b0 = b.
Proof.
move E :(ren_Tm ξ a) => u h.
move : a E.
elim : u b /h.
- sfirstorder.
- move => a b c h0 h1 ih1 a0 ?. subst.
move /Par.antirenaming : h0.
move => [b0 [h2 ?]]. subst.
hauto lq:on rew:off ctrs:rtc.
Qed.
End Pars.
(***************** Beta rules only ***********************)
Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| ProjAbs p a0 a1 :
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
| ProjPair p a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma refl n (a : Tm n) : R a a.
Proof.
induction a; hauto lq:on ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : qauto ctrs:R use:ProjPair'.
Qed.
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)).
Proof. eauto using renaming. Qed.
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)).
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => + h. move : m ρ0 ρ1.
elim : n a b /h.
- move => *.
apply : AppAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:ProjPair' use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
Lemma cong n (a b : Tm (S n)) c d :
R a b ->
R c d ->
R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:option.
Qed.
End RPar.
Module EPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj PL a1) (Proj PR a1))
(*************** Congruence ********************)
| Var i : R (VarTm i) (VarTm i)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
Lemma refl n (a : Tm n) : EPar.R a a.
Proof.
induction a; hauto lq:on ctrs:EPar.R.
Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => n a0 a1 ha iha m ξ /=.
move /(_ _ ξ) /AppEta : iha.
by asimpl.
all : qauto ctrs:R.
Qed.
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => h. move : m ρ0 ρ1. elim : n a b / h => n.
- move => a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto lq:on ctrs:R.
Qed.
Lemma substing n a0 a1 (b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
R (subst_Tm (scons b0 VarTm) a0) (subst_Tm (scons b1 VarTm) a1).
Proof.
move => h0 h1. apply morphing => //.
hauto lq:on ctrs:R inv:option.
Qed.
End EPar.
Module OExp.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
| PairEta a :
R a (Pair (Proj PL a) (Proj PR a)).
Lemma merge n (t a b : Tm n) :
rtc R a b ->
EPar.R t a ->
EPar.R t b.
Proof.
move => h. move : t. elim : a b /h.
- eauto using EPar.refl.
- hauto q:on ctrs:EPar.R inv:R.
Qed.
Lemma commutativity n (a b c : Tm n) :
EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d.
Proof.
move => h.
inversion 1; subst.
- hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl.
- hauto lq:on ctrs:EPar.R, R.
Qed.
Lemma commutativity0 n (a b c : Tm n) :
EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d.
Proof.
move => + h. move : b.
elim : a c / h.
- sfirstorder.
- hauto lq:on rew:off ctrs:rtc use:commutativity.
Qed.
End OExp.
Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
Module RPars.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:RPar.R use:RPar.refl.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong n (a b : Tm (S n)) :
rtc RPar.R a b ->
rtc RPar.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma PiCong n (a0 a1 : Tm n) b0 b1 :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pi a0 b0) (Pi a1 b1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
Lemma ProjCong n p (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed.
Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1).
Proof.
induction 1.
- apply rtc_refl.
- eauto using RPar.renaming, rtc_l.
Qed.
Lemma weakening n (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm shift a0) (ren_Tm shift a1).
Proof. apply renaming. Qed.
Lemma Abs_inv n (a : Tm (S n)) b :
rtc RPar.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar.R a a'.
Proof.
move E : (Abs a) => b0 h. move : a E.
elim : b0 b / h.
- hauto lq:on ctrs:rtc.
- hauto lq:on ctrs:rtc inv:RPar.R, rtc.
Qed.
Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc RPar.R a b ->
rtc RPar.R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed.
Lemma substing n (a b : Tm (S n)) c :
rtc RPar.R a b ->
rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto lq:on use:morphing inv:option. Qed.
End RPars.
Lemma Abs_EPar n a (b : Tm n) :
EPar.R (Abs a) b ->
(exists d, EPar.R a d /\
rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\
(exists d,
EPar.R a d /\ forall p,
rtc RPar.R (Proj p b) (Abs (Proj p d))).
Proof.
move E : (Abs a) => u h.
move : a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [[d [ih0 ih1]] _].
split; exists d.
+ split => //.
apply : rtc_l.
apply RPar.AppAbs; eauto => //=.
apply RPar.refl.
by apply RPar.refl.
move :ih1; substify; by asimpl.
+ split => // p.
apply : rtc_l.
apply : RPar.ProjAbs.
by apply RPar.refl.
eauto using RPars.ProjCong, RPars.AbsCong.
- move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl).
move : iha => [_ [d [ih0 ih1]]].
split.
+ exists (Pair (Proj PL d) (Proj PR d)).
split; first by apply EPar.PairEta.
apply : rtc_l.
apply RPar.AppPair; eauto using RPar.refl.
suff h : forall p, rtc RPar.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by
sfirstorder use:RPars.PairCong.
move => p. move /(_ p) /RPars.weakening in ih1.
apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)).
by eauto using RPars.AppCong, rtc_refl.
apply relations.rtc_once => /=.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
+ exists d. repeat split => //. move => p.
apply : rtc_l; eauto.
hauto q:on use:RPar.ProjPair', RPar.refl.
- move => n a0 a1 ha _ ? [*]. subst.
split.
+ exists a1. split => //.
apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl.
+ exists a1. split => // p.
apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl.
Qed.
Lemma Pair_EPar n (a b c : Tm n) :
EPar.R (Pair a b) c ->
(forall p, exists d, rtc RPar.R (Proj p c) d /\ EPar.R (if p is PL then a else b) d) /\
(exists d0 d1, rtc RPar.R (App (ren_Tm shift c) (VarTm var_zero))
(Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\
EPar.R a d0 /\ EPar.R b d1).
Proof.
move E : (Pair a b) => u h. move : a b E.
elim : n u c /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]].
split.
+ move => p.
exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))).
split.
* apply : relations.rtc_transitive.
** apply RPars.ProjCong. apply RPars.AbsCong. eassumption.
** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong.
apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl.
hauto l:on.
* hauto lq:on use:EPar.AppEta'.
+ exists d0, d1.
repeat split => //.
apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=.
by asimpl; renamify.
- move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl).
split => [p|].
+ move : iha => [/(_ p) [d [ih0 ih1]] _].
exists d. split=>//.
apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl.
set q := (X in rtc RPar.R X d).
by have -> : q = Proj p a1 by hauto lq:on.
+ move :iha => [iha _].
move : (iha PL) => [d0 [ih0 ih0']].
move : (iha PR) => [d1 [ih1 ih1']] {iha}.
exists d0, d1.
apply RPars.weakening in ih0, ih1.
repeat split => //=.
apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl.
apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl.
- move => n a0 a1 b0 b1 ha _ hb _ a b [*]. subst.
split.
+ move => p.
exists (if p is PL then a1 else b1).
split.
* apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl.
* hauto lq:on rew:off.
+ exists a1, b1.
split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl.
split => //.
Qed.
Lemma commutativity0 n (a b0 b1 : Tm n) :
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => h. move : b1.
elim : n a b0 / h.
- move => n a b0 ha iha b1 hb.
move : iha (hb) => /[apply].
move => [c [ih0 ih1]].
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))).
split.
+ hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0.
move => [c [ih0 ih1]].
exists (Pair (Proj PL c) (Proj PR c)). split.
+ apply RPars.PairCong;
by apply RPars.ProjCong.
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
- hauto l:on ctrs:rtc inv:RPar.R.
- move => n a0 a1 h ih b1.
elim /RPar.inv => //= _.
move => a2 a3 ? [*]. subst.
hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong.
- move => n a0 a1 b0 b1 ha iha hb ihb b2.
elim /RPar.inv => //= _.
+ move => a2 a3 b3 b4 h0 h1 [*]. subst.
move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]].
have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R.
move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]].
exists (subst_Tm (scons b VarTm) d).
split.
(* By substitution *)
* move /RPars.substing : ih2.
move /(_ b).
asimpl.
eauto using relations.rtc_transitive, RPars.AppCong.
(* By EPar morphing *)
* by apply EPar.substing.
+ move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst.
move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha
=> [c [ihc0 ihc1]].
move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]].
move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]].
move /RPars.substing : ih0. move /(_ d).
asimpl => h.
exists (Pair (App d0 d) (App d1 d)).
split.
hauto lq:on use:relations.rtc_transitive, RPars.AppCong.
apply EPar.PairCong; by apply EPar.AppCong.
+ hauto lq:on ctrs:EPar.R use:RPars.AppCong.
- hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong.
- move => n p a b0 h0 ih0 b1.
elim /RPar.inv => //= _.
+ move => ? a0 a1 h [*]. subst.
move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]].
move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]].
exists (Abs (Proj p d)).
qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive.
+ move => p0 a0 a1 b2 b3 h1 h2 [*]. subst.
move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]].
move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _].
exists d. split => //.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong.
- hauto l:on ctrs:EPar.R inv:RPar.R.
Qed.
Lemma commutativity1 n (a b0 b1 : Tm n) :
EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => + h. move : b0.
elim : a b1 / h.
- sfirstorder.
- qauto l:on use:relations.rtc_transitive, commutativity0.
Qed.
Lemma commutativity n (a b0 b1 : Tm n) :
rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c.
move => h. move : b1. elim : a b0 /h.
- sfirstorder.
- move => a0 a1 a2 + ha1 ih b1 +.
move : commutativity1; repeat move/[apply].
hauto q:on ctrs:rtc.
Qed.
Lemma Abs_EPar' n a (b : Tm n) :
EPar.R (Abs a) b ->
(exists d, EPar.R a d /\
rtc OExp.R (Abs d) b).
Proof.
move E : (Abs a) => u h.
move : a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha a ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Proj_EPar' n p a (b : Tm n) :
EPar.R (Proj p a) b ->
(exists d, EPar.R a d /\
rtc OExp.R (Proj p d) b).
Proof.
move E : (Proj p a) => u h.
move : p a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma App_EPar' n (a b u : Tm n) :
EPar.R (App a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u).
Proof.
move E : (App a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Pi_EPar' n (a : Tm n) b u :
EPar.R (Pi a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pi a0 b0) u).
Proof.
move E : (Pi a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Pair_EPar' n (a b u : Tm n) :
EPar.R (Pair a b) u ->
exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u.
Proof.
move E : (Pair a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Bot_EPar' n (u : Tm n) :
EPar.R Bot u ->
rtc OExp.R Bot u.
move E : Bot => t h.
move : E. elim : n t u /h => //=.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma EPar_diamond n (c a1 b1 : Tm n) :
EPar.R c a1 ->
EPar.R c b1 ->
exists d2, EPar.R a1 d2 /\ EPar.R b1 d2.
Proof.
move => h. move : b1. elim : n c a1 / h.
- move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]].
exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))).
hauto lq:on ctrs:EPar.R use:EPar.renaming.
- hauto lq:on rew:off ctrs:EPar.R.
- hauto lq:on use:EPar.refl.
- move => n a0 a1 ha iha a2.
move /Abs_EPar' => [d [hd0 hd1]].
move : iha hd0; repeat move/[apply].
move => [d2 [h0 h1]].
have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong.
move : OExp.commutativity0 hd1; repeat move/[apply].
move => [d1 [hd1 hd2]].
exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (App a2 b2)(App a3 b3)
by hauto l:on use:EPar.AppCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pair a2 b2)(Pair a3 b3)
by hauto l:on use:EPar.PairCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n p a0 a1 ha iha b.
move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}.
have : EPar.R (Proj p d) (Proj p d2)
by hauto l:on use:EPar.ProjCong.
move : OExp.commutativity0 h1; repeat move/[apply].
move => [d1 h1].
exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pi_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pi a2 b2)(Pi a3 b3)
by hauto l:on use:EPar.PiCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- qauto use:Bot_EPar', EPar.refl.
Qed.
Function tstar {n} (a : Tm n) :=
match a with
| VarTm i => a
| Abs a => Abs (tstar a)
| App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a)
| App (Pair a b) c =>
Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c))
| App a b => App (tstar a) (tstar b)
| Pair a b => Pair (tstar a) (tstar b)
| Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b)
| Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a)
| Pi a b => Pi (tstar a) (tstar b)
| Bot => Bot
end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
Proof.
apply tstar_ind => {n a}.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
Qed.
Lemma RPar_diamond n (c a1 b1 : Tm n) :
RPar.R c a1 ->
RPar.R c b1 ->
exists d2, RPar.R a1 d2 /\ RPar.R b1 d2.
Proof. hauto l:on use:RPar_triangle. Qed.
Lemma RPar_confluent n (c a1 b1 : Tm n) :
rtc RPar.R c a1 ->
rtc RPar.R c b1 ->
exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2.
Proof.
sfirstorder use:relations.diamond_confluent, RPar_diamond.
Qed.
Lemma EPar_confluent n (c a1 b1 : Tm n) :
rtc EPar.R c a1 ->
rtc EPar.R c b1 ->
exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2.
Proof.
sfirstorder use:relations.diamond_confluent, EPar_diamond.
Qed.
Fixpoint depth_tm {n} (a : Tm n) :=
match a with
| VarTm _ => 1
| Pi A B => 1 + max (depth_tm A) (depth_tm B)
| Abs a => 1 + depth_tm a
| App a b => 1 + max (depth_tm a) (depth_tm b)
| Proj p a => 1 + depth_tm a
| Pair a b => 1 + max (depth_tm a) (depth_tm b)
| Bot => 1
end.
Lemma depth_ren n m (ξ: fin n -> fin m) a :
depth_tm a = depth_tm (ren_Tm ξ a).
Proof.
move : m ξ. elim : n / a; scongruence.
Qed.
Lemma depth_subst n m (ρ : fin n -> Tm m) a :
(forall i, depth_tm (ρ i) = 1) ->
depth_tm a = depth_tm (subst_Tm ρ a).
Proof.
move : m ρ. elim : n / a.
- sfirstorder.
- move => n a iha m ρ hρ.
simpl.
f_equal. apply iha.
destruct i as [i|].
+ simpl.
by rewrite -depth_ren.
+ by simpl.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- hauto lq:on rew:off.
- move => n a iha b ihb m ρ hρ.
simpl. f_equal.
f_equal.
by apply iha.
apply ihb.
destruct i as [i|].
+ simpl.
by rewrite -depth_ren.
+ by simpl.
- sfirstorder.
Qed.
Lemma depth_subst_bool n (a : Tm (S n)) :
depth_tm a = depth_tm (subst_Tm (scons Bot VarTm) a).
Proof.
apply depth_subst.
destruct i as [i|] => //=.
Qed.
Local Ltac prov_tac := sfirstorder use:depth_ren.
Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool.
#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt :=
prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0;
prov A B (Abs a) := prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a;
prov A B (App a b) := prov A B a;
prov A B (Pair a b) := prov A B a /\ prov A B b;
prov A B (Proj p a) := prov A B a;
prov A B Bot := False;
prov A B (VarTm _) := False.
#[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (Pi A B) := Pi A B;
extract (Abs a) := subst_Tm (scons Bot VarTm) (extract a);
extract (App a b) := extract a;
extract (Pair a b) := extract a;
extract (Proj p a) := extract a;
extract Bot := Bot;
extract (VarTm _) := Bot.
(* Lemma extract_ren n m a (ξ : fin n -> fin m) : *)
(* extract (ren_Tm ξ a) = ren_Tm ξ (extract a). *)
(* Proof. *)
(* Lemma ren_extract' n m a b (ξ : fin n -> fin m) : *)
(* extract a = ren_Tm ξ b -> *)
(* exists a0, ren_Tm ξ a0 = a /\ extract a0 = b. *)
(* Proof. *)
(* move : n b ξ. *)
(* elim : m / a. *)
(* - move => n i m b ξ. simp extract. *)
(* case : b => //= _. *)
(* exists *)
Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) :
extract (ren_Tm ξ a) = ren_Tm ξ (extract a).
Proof.
move : m ξ. elim : n/a.
- sfirstorder.
- move => n a ih m ξ. simpl. simp extract.
rewrite ih.
by asimpl.
- hauto q:on rew:db:extract.
- hauto q:on rew:db:extract.
- hauto q:on rew:db:extract.
- hauto q:on rew:db:extract.
- sfirstorder.
Qed.
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
move => ih.
suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder.
elim.
- move => n a h.
apply ih. lia.
- move => n ih0 m a h.
apply : ih.
move => m0 b h0.
apply : ih0.
lia.
Qed.
Lemma prov_ren n m (ξ : fin n -> fin m) A B a :
prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
Proof.
move : m ξ A B. elim : n / a.
- sfirstorder rew:db:prov.
- move => n a ih m ξ A B.
simp prov. simpl.
move /ih => {ih}.
move /(_ _ (upRen_Tm_Tm ξ)).
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- qauto l:on rew:db:prov.
- hauto lq:on rew:db:prov.
- move => n A0 ih B0 h0 m ξ A B. simpl.
simp prov.
hauto l:on use:Pars.renaming.
- sfirstorder.
Qed.
Lemma prov_morph n m (ρ : fin n -> Tm m) A B a :
prov A B a ->
prov (subst_Tm ρ A) (subst_Tm (up_Tm_Tm ρ) B) (subst_Tm ρ a).
Proof.
move : m ρ A B. elim : n / a.
- hauto q:on rew:db:prov.
- move => n a ih m ρ A B.
simp prov => /=.
move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ)). asimpl.
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- hauto q:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto l:on use:Pars.substing rew:db:prov.
- qauto rew:db:prov.
Qed.
Lemma prov_par n (A : Tm n) B a b : prov A B a -> Par.R a b -> prov A B b.
Proof.
move => + h. move : A B.
elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb A B /=.
simp prov => h.
move /iha : h.
move /(prov_morph _ _ (scons b1 VarTm)).
by asimpl.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
- move => n a0 a1 ha iha A B. simp prov. move /iha.
hauto l:on use:prov_ren.
- hauto l:on rew:db:prov.
- simp prov.
- move => n a0 a1 ha iha A B. simp prov.
- hauto l:on rew:db:prov.
- hauto l:on rew:db:prov.
- hauto lq:on rew:db:prov.
- move => n A0 A1 B0 B1 hA ihA hB ihB A B. simp prov.
move => [hA0 hA1].
eauto using rtc_r.
- sfirstorder.
Qed.
Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b.
Proof.
induction 2; hauto lq:on use:prov_par.
Qed.
Lemma prov_extract n A B (a : Tm n) :
prov A B a -> exists A0 B0,
extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
move : A B. elim : n / a => //=.
- move => n a ih A B.
simp prov.
move /ih.
simp extract.
move => [A0][B0][h0][h1]h2.
(* anti renaming for par *)
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0
by hauto l:on use:Pars.antirenaming.
move => [A1 [h3 h4]].
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
by hauto l:on use:Pars.antirenaming.
move => [B1 [h5 h6]].
subst.
have {}h0 : subst_Tm (scons Bot VarTm) (extract a) =
subst_Tm (scons Bot VarTm) (ren_Tm shift (Pi A1 B1)) by sauto lq:on.
move : h0. asimpl. move => ->.
hauto lq:on.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- qauto l:on rew:db:prov, extract.
Qed.
Lemma pi_inv n (A : Tm n) B C :
rtc Par.R (Pi A B) C ->
exists A0 B0, extract C = Pi A0 B0 /\
rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
have : prov A B (Pi A B) by sfirstorder.
move : prov_pars. repeat move/[apply].
by move /prov_extract.
Qed.
Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C :
rtc Par.R (Pi A0 B0) C ->
rtc Par.R (Pi A1 B1) C ->
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
Proof.
move /pi_inv => [A2 [B2 [? [h0 h1]]]].
move /pi_inv => [A3 [B3 [? [h2 h3]]]].
exists A2, B2. hauto l:on.
Qed.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof.
move => h. elim : n a b /h; qauto ctrs:Par.R.
Qed.
Lemma RPar_Par n (a b : Tm n) : RPar.R a b -> Par.R a b.
Proof.
move => h. elim : n a b /h; hauto lq:on ctrs:Par.R.
Qed.
Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b :=
R0 a b \/ R1 a b.
Module ERPar.
Definition R {n} (a b : Tm n) := union RPar.R EPar.R a b.
Lemma RPar {n} (a b : Tm n) : RPar.R a b -> R a b.
Proof. sfirstorder. Qed.
Lemma EPar {n} (a b : Tm n) : EPar.R a b -> R a b.
Proof. sfirstorder. Qed.
Lemma refl {n} ( a : Tm n) : ERPar.R a a.
Proof.
sfirstorder use:RPar.refl, EPar.refl.
Qed.
Lemma AbsCong n (a0 a1 : Tm (S n)) :
R a0 a1 ->
rtc R (Abs a0) (Abs a1).
Proof.
move => [].
- move => h.
apply rtc_once.
left.
by apply RPar.AbsCong.
- move => h.
apply rtc_once.
right.
by apply EPar.AbsCong.
Qed.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
rtc R (App a0 b0) (App a1 b1).
Proof.
move => [] + [].
- sfirstorder use:RPar.AppCong, @rtc_once.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.AppCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.AppCong, EPar.refl.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.AppCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.AppCong, EPar.refl.
- sfirstorder use:EPar.AppCong, @rtc_once.
Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
rtc R (Pair a0 b0) (Pair a1 b1).
Proof.
move => [] + [].
- sfirstorder use:RPar.PairCong, @rtc_once.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PairCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PairCong, EPar.refl.
- move => h0 h1.
apply : rtc_l.
left. apply RPar.PairCong; eauto; apply RPar.refl.
apply rtc_once.
hauto l:on use:EPar.PairCong, EPar.refl.
- sfirstorder use:EPar.PairCong, @rtc_once.
Qed.
End ERPar.
Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong : erpar.
Module ERPars.
#[local]Ltac solve_s_rec :=
move => *; eapply relations.rtc_transitive; eauto;
hauto lq:on db:erpar.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 ->
rtc ERPar.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma AbsCong n (a0 a1 : Tm (S n)) :
rtc ERPar.R a0 a1 ->
rtc ERPar.R (Abs a0) (Abs a1).
Proof. solve_s. Qed.
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 ->
rtc ERPar.R (Pair a0 b0) (Pair a1 b1).
Proof. solve_s. Qed.
End ERPars.
Lemma ERPar_Par n (a b : Tm n) : ERPar.R a b -> Par.R a b.
Proof.
sfirstorder use:EPar_Par, RPar_Par.
Qed.
Lemma rtc_idem n (a b : Tm n) : rtc (rtc EPar.R) a b -> rtc EPar.R a b.
Proof.
induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r.
Qed.
Lemma Par_ERPar n (a b : Tm n) : Par.R a b -> rtc ERPar.R a b.
Proof.
move => h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb.
suff ? : rtc ERPar.R (App (Abs a0) b0) (App (Abs a1) b1).
apply : relations.rtc_transitive; eauto.
apply rtc_once. apply ERPar.RPar.
by apply RPar.AppAbs; eauto using RPar.refl.
eauto using ERPars.AppCong,ERPars.AbsCong.
- move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc.
apply : rtc_l. apply ERPar.RPar.
apply RPar.AppPair; eauto using RPar.refl.
sfirstorder use:ERPars.AppCong, ERPars.PairCong.
- move => n p a0 a1 ha iha.
apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl.
admit.
- move => n p a0 a1 b0 b1 ha iha hb ihb.
apply : rtc_l. apply ERPar.RPar. apply RPar.ProjPair; eauto using RPar.refl.
admit.
- move => n a0 a1 ha iha.
apply : rtc_l. apply ERPar.EPar. apply EPar.AppEta; eauto using EPar.refl.
admit.
- move => n a0 a1 ha iha.
apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl.
admit.
- sfirstorder.
- sfirstorder use:ERPars.AbsCong.
- sfirstorder use:ERPars.AppCong.
- admit.
- admit.
- admit.
- sfirstorder.
Admitted.
Lemma Pars_ERPar n (a b : Tm n) : rtc Par.R a b -> rtc ERPar.R a b.
Proof.
induction 1; hauto l:on use:Par_ERPar, @relations.rtc_transitive.
Qed.
Lemma Par_ERPar_iff n (a b : Tm n) : rtc Par.R a b <-> rtc ERPar.R a b.
Proof.
split.
sfirstorder use:Pars_ERPar, @relations.rtc_subrel.
sfirstorder use:ERPar_Par, @relations.rtc_subrel.
Qed.
Lemma RPar_ERPar n (a b : Tm n) : rtc RPar.R a b -> rtc ERPar.R a b.
Proof.
sfirstorder use:@relations.rtc_subrel.
Qed.
Lemma EPar_ERPar n (a b : Tm n) : rtc EPar.R a b -> rtc ERPar.R a b.
Proof.
sfirstorder use:@relations.rtc_subrel.
Qed.
Module Type HindleyRosen.
Parameter A : nat -> Type.
Parameter R0 R1 : forall n, A n -> A n -> Prop.
Axiom diamond_R0 : forall n, relations.diamond (R0 n).
Axiom diamond_R1 : forall n, relations.diamond (R1 n).
Axiom commutativity : forall n,
forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d.
End HindleyRosen.
Module HindleyRosenFacts (M : HindleyRosen).
Import M.
Lemma R0_comm :
forall n a b c, R0 n a b -> rtc (union (R0 n) (R1 n)) a c ->
exists d, rtc (union (R0 n) (R1 n)) b d /\ R0 n c d.
Proof.
move => n a + c + h.
elim : a c /h.
- sfirstorder.
- move => a0 a1 a2 ha ha0 ih b h.
case : ha.
+ move : diamond_R0 h; repeat move/[apply].
hauto lq:on ctrs:rtc.
+ move : commutativity h; repeat move/[apply].
hauto lq:on ctrs:rtc.
Qed.
Lemma R1_comm :
forall n a b c, R1 n a b -> rtc (union (R0 n) (R1 n)) a c ->
exists d, rtc (union (R0 n) (R1 n)) b d /\ R1 n c d.
Proof.
move => n a + c + h.
elim : a c /h.
- sfirstorder.
- move => a0 a1 a2 ha ha0 ih b h.
case : ha.
+ move : commutativity h; repeat move/[apply].
hauto lq:on ctrs:rtc.
+ move : diamond_R1 h; repeat move/[apply].
hauto lq:on ctrs:rtc.
Qed.
Lemma U_comm :
forall n a b c, (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c ->
exists d, rtc (union (R0 n) (R1 n)) b d /\ (union (R0 n) (R1 n)) c d.
Proof.
hauto lq:on use:R0_comm, R1_comm.
Qed.
Lemma U_comms :
forall n a b c, rtc (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c ->
exists d, rtc (union (R0 n) (R1 n)) b d /\ rtc (union (R0 n) (R1 n)) c d.
Proof.
move => n a b + h.
elim : a b /h.
- sfirstorder.
- hecrush ctrs:rtc use:U_comm.
Qed.
End HindleyRosenFacts.
Module HindleyRosenER <: HindleyRosen.
Definition A := Tm.
Definition R0 n := rtc (@RPar.R n).
Definition R1 n := rtc (@EPar.R n).
Lemma diamond_R0 : forall n, relations.diamond (R0 n).
sfirstorder use:RPar_confluent.
Qed.
Lemma diamond_R1 : forall n, relations.diamond (R1 n).
sfirstorder use:EPar_confluent.
Qed.
Lemma commutativity : forall n,
forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d.
Proof.
hauto l:on use:commutativity.
Qed.
End HindleyRosenER.
Module ERFacts := HindleyRosenFacts HindleyRosenER.
Lemma rtc_union n (a b : Tm n) :
rtc (union RPar.R EPar.R) a b <->
rtc (union (rtc RPar.R) (rtc EPar.R)) a b.
Proof.
split; first by induction 1; hauto lq:on ctrs:rtc.
move => h.
elim :a b /h.
- sfirstorder.
- move => a0 a1 a2.
case.
+ move => h0 h1 ih.
apply : relations.rtc_transitive; eauto.
move : h0.
apply relations.rtc_subrel.
sfirstorder.
+ move => h0 h1 ih.
apply : relations.rtc_transitive; eauto.
move : h0.
apply relations.rtc_subrel.
sfirstorder.
Qed.
Lemma Par_confluent n (a b c : Tm n) :
rtc Par.R a b ->
rtc Par.R a c ->
exists d, rtc Par.R b d /\ rtc Par.R c d.
Proof.
move : n a b c.
suff : forall (n : nat) (a b c : Tm n),
rtc ERPar.R a b ->
rtc ERPar.R a c -> exists d : Tm n, rtc ERPar.R b d /\ rtc ERPar.R c d.
move => h n a b c h0 h1.
apply Par_ERPar_iff in h0, h1.
move : h h0 h1; repeat move/[apply].
hauto lq:on use:Par_ERPar_iff.
have h := ERFacts.U_comms.
move => n a b c.
rewrite /HindleyRosenER.R0 /HindleyRosenER.R1 in h.
specialize h with (n := n).
rewrite /HindleyRosenER.A in h.
rewrite /ERPar.R.
have eq : (fun a0 b0 : Tm n => union RPar.R EPar.R a0 b0) = union RPar.R EPar.R by reflexivity.
rewrite !{}eq.
move /rtc_union => + /rtc_union.
move : h; repeat move/[apply].
hauto lq:on use:rtc_union.
Qed.