Finish most of the pi injectivity proof
This commit is contained in:
parent
213d3f1d58
commit
9bba98d411
1 changed files with 54 additions and 28 deletions
|
@ -875,34 +875,6 @@ Next Obligation.
|
|||
sfirstorder.
|
||||
Qed.
|
||||
|
||||
Lemma prov_extract n A B (a : Tm n) :
|
||||
prov A B a -> exists A0 B0,
|
||||
extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0.
|
||||
Proof.
|
||||
move : A B. elim : n / a => //=.
|
||||
- move => n a ih A B.
|
||||
simp prov.
|
||||
move /ih.
|
||||
simp extract.
|
||||
move => [A0][B0][h0][h1]h2.
|
||||
(* anti renaming for par *)
|
||||
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit.
|
||||
move => [A1 [h3 h4]].
|
||||
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
|
||||
by admit.
|
||||
move => [B1 [h5 h6]].
|
||||
subst.
|
||||
have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done.
|
||||
have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit.
|
||||
move => [a1 [h6 ?]]. subst.
|
||||
asimpl. exists A1, B1.
|
||||
repeat split => //=.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- qauto l:on rew:db:prov, extract.
|
||||
Admitted.
|
||||
|
||||
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
|
||||
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
|
||||
move => ih.
|
||||
|
@ -985,6 +957,60 @@ Proof.
|
|||
- sfirstorder.
|
||||
Admitted.
|
||||
|
||||
Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b.
|
||||
Proof.
|
||||
induction 2; hauto lq:on use:prov_par.
|
||||
Qed.
|
||||
|
||||
Lemma prov_extract n A B (a : Tm n) :
|
||||
prov A B a -> exists A0 B0,
|
||||
extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0.
|
||||
Proof.
|
||||
move : A B. elim : n / a => //=.
|
||||
- move => n a ih A B.
|
||||
simp prov.
|
||||
move /ih.
|
||||
simp extract.
|
||||
move => [A0][B0][h0][h1]h2.
|
||||
(* anti renaming for par *)
|
||||
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit.
|
||||
move => [A1 [h3 h4]].
|
||||
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
|
||||
by admit.
|
||||
move => [B1 [h5 h6]].
|
||||
subst.
|
||||
have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done.
|
||||
have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit.
|
||||
move => [a1 [h6 ?]]. subst.
|
||||
asimpl. exists A1, B1.
|
||||
repeat split => //=.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- hauto l:on rew:db:prov, extract.
|
||||
- qauto l:on rew:db:prov, extract.
|
||||
Admitted.
|
||||
|
||||
Lemma pi_inv n (A : Tm n) B C :
|
||||
rtc Par.R (Pi A B) C ->
|
||||
exists A0 B0, extract C = Pi A0 B0 /\
|
||||
rtc Par.R A A0 /\ rtc Par.R B B0.
|
||||
Proof.
|
||||
have : prov A B (Pi A B) by sfirstorder.
|
||||
move : prov_pars. repeat move/[apply].
|
||||
by move /prov_extract.
|
||||
Qed.
|
||||
|
||||
Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C :
|
||||
rtc Par.R (Pi A0 B0) C ->
|
||||
rtc Par.R (Pi A1 B1) C ->
|
||||
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
|
||||
rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
|
||||
Proof.
|
||||
move /pi_inv => [A2 [B2 [? [h0 h1]]]].
|
||||
move /pi_inv => [A3 [B3 [? [h2 h3]]]].
|
||||
exists A2, B2. hauto l:on.
|
||||
Qed.
|
||||
|
||||
Lemma Par_confluent n (c a1 b1 : Tm n) :
|
||||
rtc Par.R c a1 ->
|
||||
rtc Par.R c b1 ->
|
||||
|
|
Loading…
Add table
Reference in a new issue