From 9bba98d4113b51ad9c8332833c97716bd4936ee8 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Wed, 25 Dec 2024 01:11:49 -0500 Subject: [PATCH] Finish most of the pi injectivity proof --- theories/fp_red.v | 82 +++++++++++++++++++++++++++++++---------------- 1 file changed, 54 insertions(+), 28 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 5365b67..a52d641 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -875,34 +875,6 @@ Next Obligation. sfirstorder. Qed. -Lemma prov_extract n A B (a : Tm n) : - prov A B a -> exists A0 B0, - extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. -Proof. - move : A B. elim : n / a => //=. - - move => n a ih A B. - simp prov. - move /ih. - simp extract. - move => [A0][B0][h0][h1]h2. - (* anti renaming for par *) - have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit. - move => [A1 [h3 h4]]. - have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 - by admit. - move => [B1 [h5 h6]]. - subst. - have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done. - have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit. - move => [a1 [h6 ?]]. subst. - asimpl. exists A1, B1. - repeat split => //=. - - hauto l:on rew:db:prov, extract. - - hauto l:on rew:db:prov, extract. - - hauto l:on rew:db:prov, extract. - - qauto l:on rew:db:prov, extract. -Admitted. - Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : (forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a. move => ih. @@ -985,6 +957,60 @@ Proof. - sfirstorder. Admitted. +Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b. +Proof. + induction 2; hauto lq:on use:prov_par. +Qed. + +Lemma prov_extract n A B (a : Tm n) : + prov A B a -> exists A0 B0, + extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. +Proof. + move : A B. elim : n / a => //=. + - move => n a ih A B. + simp prov. + move /ih. + simp extract. + move => [A0][B0][h0][h1]h2. + (* anti renaming for par *) + have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit. + move => [A1 [h3 h4]]. + have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 + by admit. + move => [B1 [h5 h6]]. + subst. + have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done. + have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit. + move => [a1 [h6 ?]]. subst. + asimpl. exists A1, B1. + repeat split => //=. + - hauto l:on rew:db:prov, extract. + - hauto l:on rew:db:prov, extract. + - hauto l:on rew:db:prov, extract. + - qauto l:on rew:db:prov, extract. +Admitted. + +Lemma pi_inv n (A : Tm n) B C : + rtc Par.R (Pi A B) C -> + exists A0 B0, extract C = Pi A0 B0 /\ + rtc Par.R A A0 /\ rtc Par.R B B0. +Proof. + have : prov A B (Pi A B) by sfirstorder. + move : prov_pars. repeat move/[apply]. + by move /prov_extract. +Qed. + +Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C : + rtc Par.R (Pi A0 B0) C -> + rtc Par.R (Pi A1 B1) C -> + exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ + rtc Par.R B0 B2 /\ rtc Par.R B1 B2. +Proof. + move /pi_inv => [A2 [B2 [? [h0 h1]]]]. + move /pi_inv => [A3 [B3 [? [h2 h3]]]]. + exists A2, B2. hauto l:on. +Qed. + Lemma Par_confluent n (c a1 b1 : Tm n) : rtc Par.R c a1 -> rtc Par.R c b1 ->