Add outermost expansion and some related lemmas

This commit is contained in:
Yiyun Liu 2024-12-23 01:13:55 -05:00
parent a38a6eb8e8
commit 86dab74384
2 changed files with 46 additions and 0 deletions

View file

@ -11,3 +11,10 @@ Abs a0 ----> (Abs a3) >>* a2
| | | |
| | | |
Abs a1 ----> (Abs a4) >>* Abs a1 ----> (Abs a4) >>*
a0 >> a1
| |
| |
v v
b0 >> b1

View file

@ -242,6 +242,45 @@ Module EPar.
End EPar. End EPar.
Module OExp.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
| PairEta a :
R a (Pair (Proj PL a) (Proj PR a)).
Lemma merge n (t a b : Tm n) :
rtc R a b ->
EPar.R t a ->
EPar.R t b.
Proof.
move => h. move : t. elim : a b /h.
- eauto using EPar.refl.
- hauto q:on ctrs:EPar.R inv:R.
Qed.
Lemma commutativity n (a b c : Tm n) :
EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d.
Proof.
move => h.
inversion 1; subst.
- hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl.
- hauto lq:on ctrs:EPar.R, R.
Qed.
Lemma commutativity0 n (a b c : Tm n) :
EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d.
Proof.
move => + h. move : b.
elim : a c / h.
- sfirstorder.
- hauto lq:on rew:off ctrs:rtc use:commutativity.
Qed.
End OExp.
Local Ltac com_helper := Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming]. |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].