diff --git a/theories/diagram.txt b/theories/diagram.txt index 2eaec80..2cf16e8 100644 --- a/theories/diagram.txt +++ b/theories/diagram.txt @@ -11,3 +11,10 @@ Abs a0 ----> (Abs a3) >>* a2 | | | | Abs a1 ----> (Abs a4) >>* + + +a0 >> a1 +| | +| | +v v +b0 >> b1 diff --git a/theories/fp_red.v b/theories/fp_red.v index cf66d29..4d944e1 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -242,6 +242,45 @@ Module EPar. End EPar. +Module OExp. + Inductive R {n} : Tm n -> Tm n -> Prop := + (****************** Eta ***********************) + | AppEta a : + R a (Abs (App (ren_Tm shift a) (VarTm var_zero))) + | PairEta a : + R a (Pair (Proj PL a) (Proj PR a)). + + Lemma merge n (t a b : Tm n) : + rtc R a b -> + EPar.R t a -> + EPar.R t b. + Proof. + move => h. move : t. elim : a b /h. + - eauto using EPar.refl. + - hauto q:on ctrs:EPar.R inv:R. + Qed. + + Lemma commutativity n (a b c : Tm n) : + EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d. + Proof. + move => h. + inversion 1; subst. + - hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl. + - hauto lq:on ctrs:EPar.R, R. + Qed. + + Lemma commutativity0 n (a b c : Tm n) : + EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d. + Proof. + move => + h. move : b. + elim : a c / h. + - sfirstorder. + - hauto lq:on rew:off ctrs:rtc use:commutativity. + Qed. + +End OExp. + + Local Ltac com_helper := split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].