Prove diamond for EPar

This commit is contained in:
Yiyun Liu 2024-12-24 00:12:42 -05:00
parent 233f229b3f
commit 7b86311260

View file

@ -557,6 +557,53 @@ Proof.
- hauto l:on ctrs:OExp.R. - hauto l:on ctrs:OExp.R.
Qed. Qed.
Lemma Proj_EPar' n p a (b : Tm n) :
EPar.R (Proj p a) b ->
(exists d, EPar.R a d /\
rtc OExp.R (Proj p d) b).
Proof.
move E : (Proj p a) => u h.
move : p a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma App_EPar' n (a b u : Tm n) :
EPar.R (App a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u).
Proof.
move E : (App a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma Pair_EPar' n (a b u : Tm n) :
EPar.R (Pair a b) u ->
exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u.
Proof.
move E : (Pair a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma EPar_diamond n (c a1 b1 : Tm n) : Lemma EPar_diamond n (c a1 b1 : Tm n) :
EPar.R c a1 -> EPar.R c a1 ->
EPar.R c b1 -> EPar.R c b1 ->
@ -568,21 +615,37 @@ Proof.
hauto lq:on ctrs:EPar.R use:EPar.renaming. hauto lq:on ctrs:EPar.R use:EPar.renaming.
- hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on rew:off ctrs:EPar.R.
- hauto lq:on use:EPar.refl. - hauto lq:on use:EPar.refl.
- move => n a0 a1 ha iha a2 ha2. - move => n a0 a1 ha iha a2.
move /Abs_EPar' : (ha2). move /Abs_EPar' => [d [hd0 hd1]].
move => [d [hd0 hd1]]. move : iha hd0; repeat move/[apply].
move : iha (hd0); repeat move/[apply].
move => [d2 [h0 h1]]. move => [d2 [h0 h1]].
have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong. have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong.
move : hd1. move : OExp.commutativity0 hd1; repeat move/[apply].
move : OExp.commutativity0; repeat move/[apply].
move => [d1 [hd1 hd2]]. move => [d1 [hd1 hd2]].
exists d1. split => //. exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge.
hauto lq:on ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c.
- move => n a0 a1 b0 b1 ha iha hb ihb c hc. move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
admit. have : EPar.R (App a2 b2)(App a3 b3)
- admit. by hauto l:on use:EPar.AppCong.
- best. move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pair a2 b2)(Pair a3 b3)
by hauto l:on use:EPar.PairCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n p a0 a1 ha iha b.
move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}.
have : EPar.R (Proj p d) (Proj p d2)
by hauto l:on use:EPar.ProjCong.
move : OExp.commutativity0 h1; repeat move/[apply].
move => [d1 h1].
exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
Qed.