diff --git a/theories/fp_red.v b/theories/fp_red.v index 14db6d4..9ec286e 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -557,6 +557,53 @@ Proof. - hauto l:on ctrs:OExp.R. Qed. +Lemma Proj_EPar' n p a (b : Tm n) : + EPar.R (Proj p a) b -> + (exists d, EPar.R a d /\ + rtc OExp.R (Proj p d) b). +Proof. + move E : (Proj p a) => u h. + move : p a E. + elim : n u b /h => //=. + - move => n a0 a1 ha iha a p ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - move => n a0 a1 ha iha a p ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - hauto l:on ctrs:OExp.R. +Qed. + +Lemma App_EPar' n (a b u : Tm n) : + EPar.R (App a b) u -> + (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u). +Proof. + move E : (App a b) => t h. + move : a b E. elim : n t u /h => //=. + - move => n a0 a1 ha iha a b ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - move => n a0 a1 ha iha a b ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - hauto l:on ctrs:OExp.R. +Qed. + +Lemma Pair_EPar' n (a b u : Tm n) : + EPar.R (Pair a b) u -> + exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u. +Proof. + move E : (Pair a b) => t h. + move : a b E. elim : n t u /h => //=. + - move => n a0 a1 ha iha a b ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - move => n a0 a1 ha iha a b ?. subst. + specialize iha with (1 := eq_refl). + hauto lq:on ctrs:OExp.R use:rtc_r. + - hauto l:on ctrs:OExp.R. +Qed. + Lemma EPar_diamond n (c a1 b1 : Tm n) : EPar.R c a1 -> EPar.R c b1 -> @@ -568,21 +615,37 @@ Proof. hauto lq:on ctrs:EPar.R use:EPar.renaming. - hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on use:EPar.refl. - - move => n a0 a1 ha iha a2 ha2. - move /Abs_EPar' : (ha2). - move => [d [hd0 hd1]]. - move : iha (hd0); repeat move/[apply]. + - move => n a0 a1 ha iha a2. + move /Abs_EPar' => [d [hd0 hd1]]. + move : iha hd0; repeat move/[apply]. move => [d2 [h0 h1]]. have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong. - move : hd1. - move : OExp.commutativity0; repeat move/[apply]. + move : OExp.commutativity0 hd1; repeat move/[apply]. move => [d1 [hd1 hd2]]. - exists d1. split => //. - hauto lq:on ctrs:EPar.R use:OExp.merge. - - move => n a0 a1 b0 b1 ha iha hb ihb c hc. - admit. - - admit. - - best. + exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge. + - move => n a0 a1 b0 b1 ha iha hb ihb c. + move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. + have : EPar.R (App a2 b2)(App a3 b3) + by hauto l:on use:EPar.AppCong. + move : OExp.commutativity0 h2; repeat move/[apply]. + move => [d h]. + exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. + - move => n a0 a1 b0 b1 ha iha hb ihb c. + move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. + have : EPar.R (Pair a2 b2)(Pair a3 b3) + by hauto l:on use:EPar.PairCong. + move : OExp.commutativity0 h2; repeat move/[apply]. + move => [d h]. + exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. + - move => n p a0 a1 ha iha b. + move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}. + have : EPar.R (Proj p d) (Proj p d2) + by hauto l:on use:EPar.ProjCong. + move : OExp.commutativity0 h1; repeat move/[apply]. + move => [d1 h1]. + exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. +Qed. +