Finish adequacy

This commit is contained in:
Yiyun Liu 2025-01-09 15:15:11 -05:00
parent bf2a369824
commit 7021497615
2 changed files with 107 additions and 20 deletions

View file

@ -1866,6 +1866,7 @@ Definition prov_extract_spec {n} u (a : Tm n) :=
| TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
| Univ i => extract a = Univ i
| VarTm i => extract a = VarTm i
| Bot => extract a = Bot
| _ => True
end.
@ -1886,6 +1887,8 @@ Proof.
rewrite ren_subst_bot in h0.
rewrite h0.
eauto.
+ move => _ /(_ Bot).
by rewrite ren_subst_bot.
+ move => i h /(_ Bot).
by rewrite ren_subst_bot => ->.
- hauto lq:on.
@ -2363,12 +2366,11 @@ Lemma join_substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
join (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto lq:on unfold:join use:Pars.substing. Qed.
Fixpoint ne {n} (a : Tm n) :=
match a with
| VarTm i => true
| TBind _ A B => false
| Bot => false
| Bot => true
| App a b => ne a && nf b
| Abs a => false
| Univ _ => false

View file

@ -13,7 +13,7 @@ Definition ProdSpace {n} (PA : Tm n -> Prop)
Definition SumSpace {n} (PA : Tm n -> Prop)
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
@ -289,25 +289,36 @@ Proof.
Qed.
Lemma ne_prov_inv n (a : Tm n) :
ne a -> exists i, prov (VarTm i) a /\ extract a = VarTm i.
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
Proof.
elim : n /a => //=.
- hauto lq:on ctrs:prov.
- hauto lq:on rew:off ctrs:prov b:on.
- hauto lq:on ctrs:prov.
- move => n.
have : @prov n Bot Bot by auto using P_Bot.
tauto.
Qed.
Lemma ne_pars_inv n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
Proof.
move /ne_prov_inv.
sfirstorder use:prov_pars.
Qed.
Lemma ne_pars_extract n (a b : Tm n) :
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
Lemma join_bind_ne_contra n p (A : Tm n) B C :
ne C ->
join (TBind p A B) C -> False.
Proof.
move => hC [D [h0 h1]].
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
have [i] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
move => h.
have {}h : prov (VarTm i) D by eauto using prov_pars.
have : extract D = VarTm i by sfirstorder use:prov_extract.
congruence.
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
sfirstorder.
Qed.
Lemma join_univ_ne_contra n i C :
@ -316,11 +327,8 @@ Lemma join_univ_ne_contra n i C :
Proof.
move => hC [D [h0 h1]].
move /pars_univ_inv : h0 => ?.
have [j] : exists i, prov (VarTm i) C by sfirstorder use:ne_prov_inv.
move => h.
have {}h : prov (VarTm j) D by eauto using prov_pars.
have : extract D = VarTm j by sfirstorder use:prov_extract.
congruence.
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
sfirstorder.
Qed.
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
@ -469,7 +477,7 @@ Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
(forall j, forall a b, (RPar'.R a b) -> I j b -> I j a) ->
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (RPar'.R a b) ->
PA b -> PA a.
@ -487,6 +495,13 @@ Proof.
- eauto.
Qed.
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
A i ;; I PA ->
forall a b, (rtc RPar'.R a b) ->
PA b -> PA a.
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
A i PA ->
forall a b, (RPar'.R a b) ->
@ -507,19 +522,89 @@ Proof.
hauto lq:on use:InterpUniv_back_clos.
Qed.
Definition ρ_ok {n} (Γ : fin n -> Tm n) m (ρ : fin n -> Tm m) := forall i k PA,
Lemma pars'_wn {n} a b :
rtc RPar'.R a b ->
@wn n b ->
wn a.
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
(* P identifies a set of "reducibility candidates" *)
Definition CR {n} (P : Tm n -> Prop) :=
(forall a, P a -> wn a) /\
(forall a, ne a -> P a).
Lemma adequacy_ext i n I A PA
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
(hI : forall j, j < i -> CR (I j))
(h : A : Tm n i ;; I PA) :
CR PA /\ wn A.
Proof.
elim : A PA / h.
- hauto unfold:wne use:wne_wn.
- move => p A B PA PF hA hPA hTot hRes ihPF.
rewrite /CR.
have hb : PA Bot by firstorder.
repeat split.
+ case : p => /=.
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
* rewrite /SumSpace => a []; first by eauto with nfne.
move => [q0][q1]*.
have : wn q0 /\ wn q1 by hauto q:on.
qauto l:on use:wn_pair, pars'_wn.
+ case : p => /=.
* rewrite /ProdSpace.
move => a ha c PB hc hPB.
have hc' : wn c by sfirstorder.
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
have h : (forall a, ne a -> PB a) by sfirstorder.
suff : (forall a, wne a -> PB a) by hauto l:on.
move => a0 [a1 [h0 h1]].
eapply InterpExt_back_clos_star with (b := a1); eauto.
* rewrite /SumSpace.
move => a ha. left.
sfirstorder ctrs:rtc.
+ have wnA : wn A by firstorder.
apply wn_bind => //.
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
hauto lq:on.
- hauto l:on.
- hauto lq:on rew:off ctrs:rtc.
Qed.
Lemma adequacy i n A PA
(h : A : Tm n i PA) :
CR PA /\ wn A.
Proof.
move : i A PA h.
elim /Wf_nat.lt_wf_ind => i ih A PA.
simp InterpUniv.
apply adequacy_ext.
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
Qed.
Lemma adequacy_wne i n A PA a : A : Tm n i PA -> wne a -> PA a.
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
Lemma adequacy_wn i n A PA (h : A : Tm n i PA) a : PA a -> wn a.
Proof. hauto q:on use:adequacy. Qed.
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
subst_Tm ρ (Γ i) k PA -> PA (ρ i).
Definition SemWt {n} Γ (a A : Tm n) := forall m ρ, ρ_ok Γ m ρ -> exists k PA, subst_Tm ρ A k PA /\ PA (subst_Tm ρ a).
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, subst_Tm ρ A k PA /\ PA (subst_Tm ρ a).
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
(* Semantic context wellformedness *)
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ Γ i Univ j.
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
Lemma ρ_ok_id n (Γ : fin n -> Tm n) :
ρ_ok Γ n VarTm.
Proof. rewrite /ρ_ok. inversion i; subst. Qed.
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
ρ_ok Γ (fun _ => Bot).
Proof.
rewrite /ρ_ok.
move => i k PA.
inversion i; subst. Qed.
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
subst_Tm ρ A i PA -> PA a ->