853 lines
27 KiB
Coq
853 lines
27 KiB
Coq
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||
Require Import fp_red.
|
||
From Hammer Require Import Tactics.
|
||
From Equations Require Import Equations.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||
Import Psatz.
|
||
|
||
Definition ProdSpace {n} (PA : Tm n -> Prop)
|
||
(PF : Tm n -> (Tm n -> Prop) -> Prop) b : Prop :=
|
||
forall a PB, PA a -> PF a PB -> PB (App b a).
|
||
|
||
Definition SumSpace {n} (PA : Tm n -> Prop)
|
||
(PF : Tm n -> (Tm n -> Prop) -> Prop) t : Prop :=
|
||
wne t \/ exists a b, rtc RPar'.R t (Pair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||
|
||
Definition BindSpace {n} p := if p is TPi then @ProdSpace n else SumSpace.
|
||
|
||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||
Inductive InterpExt {n} i (I : nat -> Tm n -> Prop) : Tm n -> (Tm n -> Prop) -> Prop :=
|
||
| InterpExt_Ne A :
|
||
ne A ->
|
||
⟦ A ⟧ i ;; I ↘ wne
|
||
| InterpExt_Bind p A B PA PF :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||
⟦ TBind p A B ⟧ i ;; I ↘ BindSpace p PA PF
|
||
|
||
| InterpExt_Univ j :
|
||
j < i ->
|
||
⟦ Univ j ⟧ i ;; I ↘ (I j)
|
||
|
||
| InterpExt_Step A A0 PA :
|
||
RPar'.R A A0 ->
|
||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I ↘ PA
|
||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||
|
||
Lemma InterpExt_Univ' n i I j (PF : Tm n -> Prop) :
|
||
PF = I j ->
|
||
j < i ->
|
||
⟦ Univ j ⟧ i ;; I ↘ PF.
|
||
Proof. hauto lq:on ctrs:InterpExt. Qed.
|
||
|
||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||
|
||
Equations InterpUnivN n (i : nat) : Tm n -> (Tm n -> Prop) -> Prop by wf i lt :=
|
||
InterpUnivN n i := @InterpExt n i
|
||
(fun j A =>
|
||
match j <? i with
|
||
| left _ => exists PA, InterpUnivN n j A PA
|
||
| right _ => False
|
||
end).
|
||
Arguments InterpUnivN {n}.
|
||
|
||
Lemma InterpExt_lt_impl n i I I' A (PA : Tm n -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI h.
|
||
elim : A PA /h.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on rew:off ctrs:InterpExt.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on ctrs:InterpExt.
|
||
Qed.
|
||
|
||
Lemma InterpExt_lt_eq n i I I' A (PA : Tm n -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA =
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI. apply propositional_extensionality.
|
||
have : forall j, j < i -> I' j = I j by sfirstorder.
|
||
firstorder using InterpExt_lt_impl.
|
||
Qed.
|
||
|
||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||
|
||
Lemma InterpUnivN_nolt n i :
|
||
@InterpUnivN n i = @InterpExt n i (fun j (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||
Proof.
|
||
simp InterpUnivN.
|
||
extensionality A. extensionality PA.
|
||
set I0 := (fun _ => _).
|
||
set I1 := (fun _ => _).
|
||
apply InterpExt_lt_eq.
|
||
hauto q:on.
|
||
Qed.
|
||
|
||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||
|
||
Lemma RPar_substone n (a b : Tm (S n)) (c : Tm n):
|
||
RPar'.R a b -> RPar'.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
|
||
Proof. hauto l:on inv:option use:RPar'.substing, RPar'.refl. Qed.
|
||
|
||
Lemma InterpExt_Bind_inv n p i I (A : Tm n) B P
|
||
(h : ⟦ TBind p A B ⟧ i ;; I ↘ P) :
|
||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||
⟦ A ⟧ i ;; I ↘ PA /\
|
||
(forall a, PA a -> exists PB, PF a PB) /\
|
||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||
P = BindSpace p PA PF.
|
||
Proof.
|
||
move E : (TBind p A B) h => T h.
|
||
move : A B E.
|
||
elim : T P / h => //.
|
||
- move => //= *. scongruence.
|
||
- hauto l:on.
|
||
- move => A A0 PA hA hA0 hPi A1 B ?. subst.
|
||
elim /RPar'.inv : hA => //= _ p0 A2 A3 B0 B1 hA1 hB0 [*]. subst.
|
||
hauto lq:on ctrs:InterpExt use:RPar_substone.
|
||
Qed.
|
||
|
||
Lemma InterpExt_Ne_inv n i A I P
|
||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ P) :
|
||
ne A ->
|
||
P = wne.
|
||
Proof.
|
||
elim : A P / h => //=.
|
||
qauto l:on ctrs:prov inv:prov use:nf_refl.
|
||
Qed.
|
||
|
||
Lemma InterpExt_Univ_inv n i I j P
|
||
(h : ⟦ Univ j : Tm n ⟧ i ;; I ↘ P) :
|
||
P = I j /\ j < i.
|
||
Proof.
|
||
move : h.
|
||
move E : (Univ j) => T h. move : j E.
|
||
elim : T P /h => //.
|
||
- move => //= *. scongruence.
|
||
- hauto l:on.
|
||
- hauto lq:on rew:off inv:RPar'.R.
|
||
Qed.
|
||
|
||
Lemma InterpExt_Bind_nopf n p i I (A : Tm n) B PA :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) ->
|
||
⟦ TBind p A B ⟧ i ;; I ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB)).
|
||
Proof.
|
||
move => h0 h1. apply InterpExt_Bind =>//.
|
||
Qed.
|
||
|
||
Lemma InterpUnivN_Fun_nopf n p i (A : Tm n) B PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) ->
|
||
⟦ TBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB)).
|
||
Proof.
|
||
hauto l:on use:InterpExt_Bind_nopf rew:db:InterpUniv.
|
||
Qed.
|
||
|
||
Lemma InterpExt_cumulative n i j I (A : Tm n) PA :
|
||
i <= j ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ j ;; I ↘ PA.
|
||
Proof.
|
||
move => h h0.
|
||
elim : A PA /h0;
|
||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||
Qed.
|
||
|
||
Lemma InterpUnivN_cumulative n i (A : Tm n) PA :
|
||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||
⟦ A ⟧ j ↘ PA.
|
||
Proof.
|
||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||
Qed.
|
||
|
||
Lemma InterpExt_preservation n i I (A : Tm n) B P (h : InterpExt i I A P) :
|
||
RPar'.R A B ->
|
||
⟦ B ⟧ i ;; I ↘ P.
|
||
Proof.
|
||
move : B.
|
||
elim : A P / h; auto.
|
||
- hauto lq:on use:nf_refl ctrs:InterpExt.
|
||
- move => p A B PA PF hPA ihPA hPB hPB' ihPB T hT.
|
||
elim /RPar'.inv : hT => //.
|
||
move => hPar p0 A0 A1 B0 B1 h0 h1 [? ?] ? ?; subst.
|
||
apply InterpExt_Bind; auto => a PB hPB0.
|
||
apply : ihPB; eauto.
|
||
sfirstorder use:RPar'.cong, RPar'.refl.
|
||
- hauto lq:on inv:RPar'.R ctrs:InterpExt.
|
||
- move => A B P h0 h1 ih1 C hC.
|
||
have [D [h2 h3]] := RPar'_diamond _ _ _ _ h0 hC.
|
||
hauto lq:on ctrs:InterpExt.
|
||
Qed.
|
||
|
||
Lemma InterpUnivN_preservation n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||
RPar'.R A B ->
|
||
⟦ B ⟧ i ↘ P.
|
||
Proof. hauto l:on rew:db:InterpUnivN use: InterpExt_preservation. Qed.
|
||
|
||
Lemma InterpExt_back_preservation_star n i I (A : Tm n) B P (h : ⟦ B ⟧ i ;; I ↘ P) :
|
||
rtc RPar'.R A B ->
|
||
⟦ A ⟧ i ;; I ↘ P.
|
||
Proof. induction 1; hauto l:on ctrs:InterpExt. Qed.
|
||
|
||
Lemma InterpExt_preservation_star n i I (A : Tm n) B P (h : ⟦ A ⟧ i ;; I ↘ P) :
|
||
rtc RPar'.R A B ->
|
||
⟦ B ⟧ i ;; I ↘ P.
|
||
Proof. induction 1; hauto l:on use:InterpExt_preservation. Qed.
|
||
|
||
Lemma InterpUnivN_preservation_star n i (A : Tm n) B P (h : ⟦ A ⟧ i ↘ P) :
|
||
rtc RPar'.R A B ->
|
||
⟦ B ⟧ i ↘ P.
|
||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_preservation_star. Qed.
|
||
|
||
Lemma InterpUnivN_back_preservation_star n i (A : Tm n) B P (h : ⟦ B ⟧ i ↘ P) :
|
||
rtc RPar'.R A B ->
|
||
⟦ A ⟧ i ↘ P.
|
||
Proof. hauto l:on rew:db:InterpUnivN use:InterpExt_back_preservation_star. Qed.
|
||
|
||
Function hfb {n} (A : Tm n) :=
|
||
match A with
|
||
| TBind _ _ _ => true
|
||
| Univ _ => true
|
||
| _ => ne A
|
||
end.
|
||
|
||
Inductive hfb_case {n} : Tm n -> Prop :=
|
||
| hfb_bind p A B :
|
||
hfb_case (TBind p A B)
|
||
| hfb_univ i :
|
||
hfb_case (Univ i)
|
||
| hfb_ne A :
|
||
ne A ->
|
||
hfb_case A.
|
||
|
||
Derive Dependent Inversion hfb_inv with (forall n (a : Tm n), hfb_case a) Sort Prop.
|
||
|
||
Lemma ne_hfb {n} (A : Tm n) : ne A -> hfb A.
|
||
Proof. case : A => //=. Qed.
|
||
|
||
Lemma hfb_caseP {n} (A : Tm n) : hfb A -> hfb_case A.
|
||
Proof. hauto lq:on ctrs:hfb_case inv:Tm use:ne_hfb. Qed.
|
||
|
||
Lemma InterpExtInv n i I (A : Tm n) PA :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
exists B, hfb B /\ rtc RPar'.R A B /\ ⟦ B ⟧ i ;; I ↘ PA.
|
||
Proof.
|
||
move => h. elim : A PA /h.
|
||
- hauto q:on ctrs:InterpExt, rtc use:ne_hfb.
|
||
- move => p A B PA PF hPA _ hPF hPF0 _.
|
||
exists (TBind p A B). repeat split => //=.
|
||
apply rtc_refl.
|
||
hauto l:on ctrs:InterpExt.
|
||
- move => j ?. exists (Univ j).
|
||
hauto l:on ctrs:InterpExt.
|
||
- hauto lq:on ctrs:rtc.
|
||
Qed.
|
||
|
||
Lemma RPar'_Par n (A B : Tm n) :
|
||
RPar'.R A B ->
|
||
Par.R A B.
|
||
Proof. induction 1; hauto lq:on ctrs:Par.R. Qed.
|
||
|
||
Lemma RPar's_Pars n (A B : Tm n) :
|
||
rtc RPar'.R A B ->
|
||
rtc Par.R A B.
|
||
Proof. hauto lq:on use:RPar'_Par, rtc_subrel. Qed.
|
||
|
||
Lemma RPar's_join n (A B : Tm n) :
|
||
rtc RPar'.R A B -> join A B.
|
||
Proof. hauto lq:on ctrs:rtc use:RPar's_Pars. Qed.
|
||
|
||
Lemma bindspace_iff n p (PA : Tm n -> Prop) PF PF0 b :
|
||
(forall (a : Tm n) (PB PB0 : Tm n -> Prop), PF a PB -> PF0 a PB0 -> PB = PB0) ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a, PA a -> exists PB0, PF0 a PB0) ->
|
||
(BindSpace p PA PF b <-> BindSpace p PA PF0 b).
|
||
Proof.
|
||
rewrite /BindSpace => h hPF hPF0.
|
||
case : p => /=.
|
||
- rewrite /ProdSpace.
|
||
split.
|
||
move => h1 a PB ha hPF'.
|
||
specialize hPF with (1 := ha).
|
||
specialize hPF0 with (1 := ha).
|
||
sblast.
|
||
move => ? a PB ha.
|
||
specialize hPF with (1 := ha).
|
||
specialize hPF0 with (1 := ha).
|
||
sblast.
|
||
- rewrite /SumSpace.
|
||
hauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Lemma ne_prov_inv n (a : Tm n) :
|
||
ne a -> (exists i, prov (VarTm i) a) \/ prov Bot a.
|
||
Proof.
|
||
elim : n /a => //=.
|
||
- hauto lq:on ctrs:prov.
|
||
- hauto lq:on rew:off ctrs:prov b:on.
|
||
- hauto lq:on ctrs:prov.
|
||
- move => n.
|
||
have : @prov n Bot Bot by auto using P_Bot.
|
||
tauto.
|
||
Qed.
|
||
|
||
Lemma ne_pars_inv n (a b : Tm n) :
|
||
ne a -> rtc Par.R a b -> (exists i, prov (VarTm i) b) \/ prov Bot b.
|
||
Proof.
|
||
move /ne_prov_inv.
|
||
sfirstorder use:prov_pars.
|
||
Qed.
|
||
|
||
Lemma ne_pars_extract n (a b : Tm n) :
|
||
ne a -> rtc Par.R a b -> (exists i, extract b = (VarTm i)) \/ extract b = Bot.
|
||
Proof. hauto lq:on rew:off use:ne_pars_inv, prov_extract. Qed.
|
||
|
||
Lemma join_bind_ne_contra n p (A : Tm n) B C :
|
||
ne C ->
|
||
join (TBind p A B) C -> False.
|
||
Proof.
|
||
move => hC [D [h0 h1]].
|
||
move /pars_pi_inv : h0 => [A0 [B0 [h2 [h3 h4]]]].
|
||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||
sfirstorder.
|
||
Qed.
|
||
|
||
Lemma join_univ_ne_contra n i C :
|
||
ne C ->
|
||
join (Univ i : Tm n) C -> False.
|
||
Proof.
|
||
move => hC [D [h0 h1]].
|
||
move /pars_univ_inv : h0 => ?.
|
||
have : (exists i, extract D = (VarTm i)) \/ extract D = Bot by eauto using ne_pars_extract.
|
||
sfirstorder.
|
||
Qed.
|
||
|
||
#[export]Hint Resolve join_univ_ne_contra join_bind_ne_contra join_univ_pi_contra join_symmetric join_transitive : join.
|
||
|
||
Lemma InterpExt_Join n i I (A B : Tm n) PA PB :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ B ⟧ i ;; I ↘ PB ->
|
||
join A B ->
|
||
PA = PB.
|
||
Proof.
|
||
move => h. move : B PB. elim : A PA /h.
|
||
- move => A hA B PB /InterpExtInv.
|
||
move => [B0 []].
|
||
move /hfb_caseP. elim/hfb_inv => _.
|
||
+ move => p A0 B1 ? [/RPar's_join h0 h1] h2. subst. exfalso.
|
||
eauto with join.
|
||
+ move => ? ? [/RPar's_join *]. subst. exfalso.
|
||
eauto with join.
|
||
+ hauto lq:on use:InterpExt_Ne_inv.
|
||
- move => p A B PA PF hPA ihPA hTot hRes ihPF U PU /InterpExtInv.
|
||
move => [B0 []].
|
||
move /hfb_caseP.
|
||
elim /hfb_inv => _.
|
||
rename B0 into B00.
|
||
+ move => p0 A0 B0 ? [hr hPi]. subst.
|
||
move /InterpExt_Bind_inv : hPi.
|
||
move => [PA0][PF0][hPA0][hTot0][hRes0]?. subst.
|
||
move => hjoin.
|
||
have{}hr : join U (TBind p0 A0 B0) by auto using RPar's_join.
|
||
have hj : join (TBind p A B) (TBind p0 A0 B0) by eauto using join_transitive.
|
||
have {hj} : p0 = p /\ join A A0 /\ join B B0 by hauto l:on use:join_pi_inj.
|
||
move => [? [h0 h1]]. subst.
|
||
have ? : PA0 = PA by hauto l:on. subst.
|
||
rewrite /ProdSpace.
|
||
extensionality b.
|
||
apply propositional_extensionality.
|
||
apply bindspace_iff; eauto.
|
||
move => a PB PB0 hPB hPB0.
|
||
apply : ihPF; eauto.
|
||
by apply join_substing.
|
||
+ move => j ?. subst.
|
||
move => [h0 h1] h.
|
||
have ? : join U (Univ j) by eauto using RPar's_join.
|
||
have : join (TBind p A B) (Univ j) by eauto using join_transitive.
|
||
move => ?. exfalso.
|
||
eauto using join_univ_pi_contra.
|
||
+ move => A0 ? ? [/RPar's_join ?]. subst.
|
||
move => _ ?. exfalso. eauto with join.
|
||
- move => j ? B PB /InterpExtInv.
|
||
move => [? []]. move/hfb_caseP.
|
||
elim /hfb_inv => //= _.
|
||
+ move => p A0 B0 _ [].
|
||
move /RPar's_join => *.
|
||
exfalso. eauto with join.
|
||
+ move => m _ [/RPar's_join h0 + h1].
|
||
have /join_univ_inj {h0 h1} ? : join (Univ j : Tm n) (Univ m) by eauto using join_transitive.
|
||
subst.
|
||
move /InterpExt_Univ_inv. firstorder.
|
||
+ move => A ? ? [/RPar's_join] *. subst. exfalso. eauto with join.
|
||
- move => A A0 PA h.
|
||
have /join_symmetric {}h : join A A0 by hauto lq:on ctrs:rtc use:RPar'_Par, relations.rtc_once.
|
||
eauto using join_transitive.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Join n i (A B : Tm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
join A B ->
|
||
PA = PB.
|
||
Proof. hauto l:on use:InterpExt_Join rew:db:InterpUniv. Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv n p i (A : Tm n) B P
|
||
(h : ⟦ TBind p A B ⟧ i ↘ P) :
|
||
exists (PA : Tm n -> Prop) (PF : Tm n -> (Tm n -> Prop) -> Prop),
|
||
⟦ A ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, PF a PB) /\
|
||
(forall a PB, PF a PB -> ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||
P = BindSpace p PA PF.
|
||
Proof. hauto l:on use:InterpExt_Bind_inv rew:db:InterpUniv. Qed.
|
||
|
||
Lemma InterpUniv_Univ_inv n i j P
|
||
(h : ⟦ Univ j ⟧ i ↘ P) :
|
||
P = (fun (A : Tm n) => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||
Proof. hauto l:on use:InterpExt_Univ_inv rew:db:InterpUniv. Qed.
|
||
|
||
Lemma InterpExt_Functional n i I (A B : Tm n) PA PB :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I ↘ PB ->
|
||
PA = PB.
|
||
Proof. hauto use:InterpExt_Join, join_refl. Qed.
|
||
|
||
Lemma InterpUniv_Functional n i (A : Tm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PB ->
|
||
PA = PB.
|
||
Proof. hauto use:InterpExt_Functional rew:db:InterpUniv. Qed.
|
||
|
||
Lemma InterpUniv_Join' n i j (A B : Tm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ j ↘ PB ->
|
||
join A B ->
|
||
PA = PB.
|
||
Proof.
|
||
have [? ?] : i <= max i j /\ j <= max i j by lia.
|
||
move => hPA hPB.
|
||
have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUnivN_cumulative.
|
||
have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUnivN_cumulative.
|
||
eauto using InterpUniv_Join.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Functional' n i j A PA PB :
|
||
⟦ A : Tm n ⟧ i ↘ PA ->
|
||
⟦ A ⟧ j ↘ PB ->
|
||
PA = PB.
|
||
Proof.
|
||
hauto l:on use:InterpUniv_Join', join_refl.
|
||
Qed.
|
||
|
||
Lemma InterpExt_Bind_inv_nopf i n I p A B P (h : ⟦TBind p A B ⟧ i ;; I ↘ P) :
|
||
exists (PA : Tm n -> Prop),
|
||
⟦ A ⟧ i ;; I ↘ PA /\
|
||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB) /\
|
||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ;; I ↘ PB).
|
||
Proof.
|
||
move /InterpExt_Bind_inv : h. intros (PA & PF & hPA & hPF & hPF' & ?); subst.
|
||
exists PA. repeat split => //.
|
||
- sfirstorder.
|
||
- extensionality b.
|
||
case : p => /=.
|
||
+ extensionality a.
|
||
extensionality PB.
|
||
extensionality ha.
|
||
apply propositional_extensionality.
|
||
split.
|
||
* hecrush use:InterpExt_Functional.
|
||
* sfirstorder.
|
||
+ rewrite /SumSpace. apply propositional_extensionality.
|
||
split; hauto q:on use:InterpExt_Functional.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦TBind p A B ⟧ i ↘ P) :
|
||
exists (PA : Tm n -> Prop),
|
||
⟦ A ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB) /\
|
||
P = BindSpace p PA (fun a PB => ⟦ subst_Tm (scons a VarTm) B ⟧ i ↘ PB).
|
||
Proof. hauto l:on use:InterpExt_Bind_inv_nopf rew:db:InterpUniv. Qed.
|
||
|
||
Lemma InterpExt_back_clos n i I (A : Tm n) PA :
|
||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
forall a b, (RPar'.R a b) ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
move => hI h.
|
||
elim : A PA /h.
|
||
- hauto q:on ctrs:rtc unfold:wne.
|
||
- move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||
case : p => //=.
|
||
+ have : forall b0 b1 a, RPar'.R b0 b1 -> RPar'.R (App b0 a) (App b1 a)
|
||
by hauto lq:on ctrs:RPar'.R use:RPar'.refl.
|
||
hauto lq:on rew:off unfold:ProdSpace.
|
||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||
- eauto.
|
||
- eauto.
|
||
Qed.
|
||
|
||
Lemma InterpExt_back_clos_star n i I (A : Tm n) PA :
|
||
(forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a) ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
forall a b, (rtc RPar'.R a b) ->
|
||
PA b -> PA a.
|
||
Proof. induction 3; hauto l:on use:InterpExt_back_clos. Qed.
|
||
|
||
Lemma InterpUniv_back_clos n i (A : Tm n) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, (RPar'.R a b) ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
simp InterpUniv.
|
||
apply InterpExt_back_clos.
|
||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_back_clos_star n i (A : Tm n) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, rtc RPar'.R a b ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
move => h a b.
|
||
induction 1=> //.
|
||
hauto lq:on use:InterpUniv_back_clos.
|
||
Qed.
|
||
|
||
Lemma pars'_wn {n} a b :
|
||
rtc RPar'.R a b ->
|
||
@wn n b ->
|
||
wn a.
|
||
Proof. sfirstorder unfold:wn use:@relations.rtc_transitive. Qed.
|
||
|
||
(* P identifies a set of "reducibility candidates" *)
|
||
Definition CR {n} (P : Tm n -> Prop) :=
|
||
(forall a, P a -> wn a) /\
|
||
(forall a, ne a -> P a).
|
||
|
||
Lemma adequacy_ext i n I A PA
|
||
(hI0 : forall j, j < i -> forall a b, (RPar'.R a b) -> I j b -> I j a)
|
||
(hI : forall j, j < i -> CR (I j))
|
||
(h : ⟦ A : Tm n ⟧ i ;; I ↘ PA) :
|
||
CR PA /\ wn A.
|
||
Proof.
|
||
elim : A PA / h.
|
||
- hauto unfold:wne use:wne_wn.
|
||
- move => p A B PA PF hA hPA hTot hRes ihPF.
|
||
rewrite /CR.
|
||
have hb : PA Bot by firstorder.
|
||
repeat split.
|
||
+ case : p => /=.
|
||
* qauto l:on use:ext_wn unfold:ProdSpace, CR.
|
||
* rewrite /SumSpace => a []; first by eauto with nfne.
|
||
move => [q0][q1]*.
|
||
have : wn q0 /\ wn q1 by hauto q:on.
|
||
qauto l:on use:wn_pair, pars'_wn.
|
||
+ case : p => /=.
|
||
* rewrite /ProdSpace.
|
||
move => a ha c PB hc hPB.
|
||
have hc' : wn c by sfirstorder.
|
||
have : wne (App a c) by hauto lq:on use:wne_app ctrs:rtc.
|
||
have h : (forall a, ne a -> PB a) by sfirstorder.
|
||
suff : (forall a, wne a -> PB a) by hauto l:on.
|
||
move => a0 [a1 [h0 h1]].
|
||
eapply InterpExt_back_clos_star with (b := a1); eauto.
|
||
* rewrite /SumSpace.
|
||
move => a ha. left.
|
||
sfirstorder ctrs:rtc.
|
||
+ have wnA : wn A by firstorder.
|
||
apply wn_bind => //.
|
||
apply wn_antirenaming with (ρ := scons Bot VarTm);first by hauto q:on inv:option.
|
||
hauto lq:on.
|
||
- hauto l:on.
|
||
- hauto lq:on rew:off ctrs:rtc.
|
||
Qed.
|
||
|
||
Lemma adequacy i n A PA
|
||
(h : ⟦ A : Tm n ⟧ i ↘ PA) :
|
||
CR PA /\ wn A.
|
||
Proof.
|
||
move : i A PA h.
|
||
elim /Wf_nat.lt_wf_ind => i ih A PA.
|
||
simp InterpUniv.
|
||
apply adequacy_ext.
|
||
hauto lq:on ctrs:rtc use:InterpUnivN_back_preservation_star.
|
||
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
|
||
Qed.
|
||
|
||
Lemma adequacy_wne i n A PA a : ⟦ A : Tm n ⟧ i ↘ PA -> wne a -> PA a.
|
||
Proof. qauto l:on use:InterpUniv_back_clos_star, adequacy unfold:CR. Qed.
|
||
|
||
Lemma adequacy_wn i n A PA (h : ⟦ A : Tm n ⟧ i ↘ PA) a : PA a -> wn a.
|
||
Proof. hauto q:on use:adequacy. Qed.
|
||
|
||
Definition ρ_ok {n} (Γ : fin n -> Tm n) (ρ : fin n -> Tm 0) := forall i k PA,
|
||
⟦ subst_Tm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i).
|
||
|
||
Definition SemWt {n} Γ (a A : Tm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_Tm ρ A ⟧ k ↘ PA /\ PA (subst_Tm ρ a).
|
||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||
|
||
(* Semantic context wellformedness *)
|
||
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ Univ j.
|
||
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
|
||
|
||
Lemma ρ_ok_bot n (Γ : fin n -> Tm n) :
|
||
ρ_ok Γ (fun _ => Bot).
|
||
Proof.
|
||
rewrite /ρ_ok.
|
||
move => i k PA.
|
||
inversion i; subst. Qed.
|
||
|
||
Lemma ρ_ok_cons n i (Γ : fin n -> Tm n) ρ a PA A :
|
||
⟦ subst_Tm ρ A ⟧ i ↘ PA -> PA a ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok (funcomp (ren_Tm shift) (scons A Γ)) (scons a ρ).
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
rewrite /ρ_ok.
|
||
move => j.
|
||
destruct j as [j|].
|
||
- move => m PA0. asimpl => ?.
|
||
asimpl.
|
||
firstorder.
|
||
- move => m PA0. asimpl => h3.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
|
||
by subst.
|
||
Qed.
|
||
|
||
Definition renaming_ok {n m} (Γ : fin n -> Tm n) (Δ : fin m -> Tm m) (ξ : fin m -> fin n) :=
|
||
forall (i : fin m), ren_Tm ξ (Δ i) = Γ (ξ i).
|
||
|
||
Lemma ρ_ok_renaming n m (Γ : fin n -> Tm n) ρ :
|
||
forall (Δ : fin m -> Tm m) ξ,
|
||
renaming_ok Γ Δ ξ ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok Δ (funcomp ρ ξ).
|
||
Proof.
|
||
move => Δ ξ hξ hρ.
|
||
rewrite /ρ_ok => i m' PA.
|
||
rewrite /renaming_ok in hξ.
|
||
rewrite /ρ_ok in hρ.
|
||
move => h.
|
||
rewrite /funcomp.
|
||
apply hρ with (m := m').
|
||
move : h. rewrite -hξ.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming_SemWt {n} Γ a A :
|
||
Γ ⊨ a ∈ A ->
|
||
forall {m} Δ (ξ : fin n -> fin m),
|
||
renaming_ok Δ Γ ξ ->
|
||
Δ ⊨ ren_Tm ξ a ∈ ren_Tm ξ A.
|
||
Proof.
|
||
rewrite /SemWt => h m Δ ξ hξ ρ hρ.
|
||
have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming.
|
||
hauto q:on solve+:(by asimpl).
|
||
Qed.
|
||
|
||
Lemma weakening_Sem n Γ (a : Tm n) A B i
|
||
(h0 : Γ ⊨ B ∈ Univ i)
|
||
(h1 : Γ ⊨ a ∈ A) :
|
||
funcomp (ren_Tm shift) (scons B Γ) ⊨ ren_Tm shift a ∈ ren_Tm shift A.
|
||
Proof.
|
||
apply : renaming_SemWt; eauto.
|
||
hauto lq:on inv:option unfold:renaming_ok.
|
||
Qed.
|
||
|
||
Lemma SemWt_Univ n Γ (A : Tm n) i :
|
||
Γ ⊨ A ∈ Univ i <->
|
||
forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_Tm ρ A ⟧ i ↘ S.
|
||
Proof.
|
||
rewrite /SemWt.
|
||
split.
|
||
- hauto lq:on rew:off use:InterpUniv_Univ_inv.
|
||
- move => /[swap] ρ /[apply].
|
||
move => [PA hPA].
|
||
exists (S i). eexists.
|
||
split.
|
||
+ simp InterpUniv. apply InterpExt_Univ. lia.
|
||
+ simpl. eauto.
|
||
Qed.
|
||
|
||
(* Structural laws for Semantic context wellformedness *)
|
||
Lemma SemWff_nil : SemWff null.
|
||
Proof. case. Qed.
|
||
|
||
Lemma SemWff_cons n Γ (A : Tm n) i :
|
||
⊨ Γ ->
|
||
Γ ⊨ A ∈ Univ i ->
|
||
(* -------------- *)
|
||
⊨ funcomp (ren_Tm shift) (scons A Γ).
|
||
Proof.
|
||
move => h h0.
|
||
move => j. destruct j as [j|].
|
||
- move /(_ j) : h => [k hk].
|
||
exists k. change (Univ k) with (ren_Tm shift (Univ k : Tm n)).
|
||
eauto using weakening_Sem.
|
||
- hauto q:on use:weakening_Sem.
|
||
Qed.
|
||
|
||
(* Semantic typing rules *)
|
||
Lemma ST_Var n Γ (i : fin n) :
|
||
⊨ Γ ->
|
||
Γ ⊨ VarTm i ∈ Γ i.
|
||
Proof.
|
||
move /(_ i) => [j /SemWt_Univ h].
|
||
rewrite /SemWt => ρ /[dup] hρ {}/h [S hS].
|
||
exists j, S.
|
||
asimpl. firstorder.
|
||
Qed.
|
||
|
||
Lemma ST_Bind n Γ i j p (A : Tm n) (B : Tm (S n)) :
|
||
Γ ⊨ A ∈ Univ i ->
|
||
funcomp (ren_Tm shift) (scons A Γ) ⊨ B ∈ Univ j ->
|
||
Γ ⊨ TBind p A B ∈ Univ (max i j).
|
||
Proof.
|
||
move => /SemWt_Univ h0 /SemWt_Univ h1.
|
||
apply SemWt_Univ => ρ hρ.
|
||
move /h0 : (hρ){h0} => [S hS].
|
||
eexists => /=.
|
||
have ? : i <= Nat.max i j by lia.
|
||
apply InterpUnivN_Fun_nopf.
|
||
- eauto using InterpUnivN_cumulative.
|
||
- move => *. asimpl. hauto l:on use:InterpUnivN_cumulative, ρ_ok_cons.
|
||
Qed.
|
||
|
||
Lemma ST_Conv n Γ (a : Tm n) A B i :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ B ∈ Univ i ->
|
||
join A B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof.
|
||
move => ha /SemWt_Univ h h0.
|
||
move => ρ hρ.
|
||
have {}h0 : join (subst_Tm ρ A) (subst_Tm ρ B) by eauto using join_substing.
|
||
move /ha : (hρ){ha} => [m [PA [h1 h2]]].
|
||
move /h : (hρ){h} => [S hS].
|
||
have ? : PA = S by eauto using InterpUniv_Join'. subst.
|
||
eauto.
|
||
Qed.
|
||
|
||
Lemma ST_Abs n Γ (a : Tm (S n)) A B i :
|
||
Γ ⊨ TBind TPi A B ∈ (Univ i) ->
|
||
funcomp (ren_Tm shift) (scons A Γ) ⊨ a ∈ B ->
|
||
Γ ⊨ Abs a ∈ TBind TPi A B.
|
||
Proof.
|
||
rename a into b.
|
||
move /SemWt_Univ => + hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
move => a PB ha. asimpl => hPB.
|
||
move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply].
|
||
move /hb.
|
||
intros (m & PB0 & hPB0 & hPB0').
|
||
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
|
||
apply : InterpUniv_back_clos; eauto.
|
||
apply : RPar'.AppAbs'; eauto using RPar'.refl.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma ST_App n Γ (b a : Tm n) A B :
|
||
Γ ⊨ b ∈ TBind TPi A B ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ App b a ∈ subst_Tm (scons a VarTm) B.
|
||
Proof.
|
||
move => hf hb ρ hρ.
|
||
move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf).
|
||
move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb).
|
||
simpl in hPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
move : hf (hb). move/[apply].
|
||
move : hTot hb. move/[apply].
|
||
asimpl. hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma ST_Pair n Γ (a b : Tm n) A B i :
|
||
Γ ⊨ TBind TSig A B ∈ (Univ i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_Tm (scons a VarTm) B ->
|
||
Γ ⊨ Pair a b ∈ TBind TSig A B.
|
||
Proof.
|
||
move /SemWt_Univ => + ha hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
rewrite /SumSpace.
|
||
exists (subst_Tm ρ a), (subst_Tm ρ b).
|
||
split.
|
||
- hauto l:on use:Pars.substing.
|
||
- move /ha : (hρ){ha}.
|
||
move => [m][PA0][h0]h1.
|
||
move /hb : (hρ){hb}.
|
||
move => [k][PB][h2]h3.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
split => // PB0.
|
||
move : h2. asimpl => *.
|
||
have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst.
|
||
Qed.
|
||
|
||
Lemma ST_Proj1 n Γ (a : Tm n) A B :
|
||
Γ ⊨ a ∈ TBind TSig A B ->
|
||
Γ ⊨ Proj PL a ∈ A.
|
||
Proof.
|
||
move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||
exists m, S. split => //=.
|
||
have {}h4 : rtc RPar'.R (Proj PL (subst_Tm ρ a)) (Proj PL (Pair a0 b0)) by eauto using RPar's.ProjCong.
|
||
have ? : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.refl, RPar'.ProjPair'.
|
||
have : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||
move => h.
|
||
apply : InterpUniv_back_clos_star; eauto.
|
||
Qed.
|
||
|
||
Lemma substing_RPar' n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||
RPar'.R B C ->
|
||
RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||
Proof. hauto lq:on inv:option use:RPar'.morphing, RPar'.refl. Qed.
|
||
|
||
Lemma substing_RPar's n m (A : Tm (S n)) ρ (B : Tm m) C :
|
||
rtc RPar'.R B C ->
|
||
rtc RPar'.R (subst_Tm (scons B ρ) A) (subst_Tm (scons C ρ) A).
|
||
Proof. induction 1; hauto lq:on ctrs:rtc use:substing_RPar'. Qed.
|
||
|
||
Lemma ST_Proj2 n Γ (a : Tm n) A B :
|
||
Γ ⊨ a ∈ TBind TSig A B ->
|
||
Γ ⊨ Proj PR a ∈ subst_Tm (scons (Proj PL a) VarTm) B.
|
||
Proof.
|
||
move => h ρ hρ.
|
||
move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
move => [a0 [b0 [h4 [h5 h6]]]].
|
||
specialize h3 with (1 := h5).
|
||
move : h3 => [PB hPB].
|
||
have hr : forall p, rtc RPar'.R (Proj p (subst_Tm ρ a)) (Proj p (Pair a0 b0)) by eauto using RPar's.ProjCong.
|
||
have hrl : RPar'.R (Proj PL (Pair a0 b0)) a0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||
have hrr : RPar'.R (Proj PR (Pair a0 b0)) b0 by hauto l:on use:RPar'.ProjPair', RPar'.refl.
|
||
exists m, PB.
|
||
asimpl. split.
|
||
- have h : rtc RPar'.R (Proj PL (subst_Tm ρ a)) a0 by eauto using @relations.rtc_r.
|
||
have {}h : rtc RPar'.R (subst_Tm (scons (Proj PL (subst_Tm ρ a)) ρ) B) (subst_Tm (scons a0 ρ) B) by eauto using substing_RPar's.
|
||
move : hPB. asimpl.
|
||
eauto using InterpUnivN_back_preservation_star.
|
||
- hauto lq:on use:@relations.rtc_r, InterpUniv_back_clos_star.
|
||
Qed.
|