Combine the different prov cases into one function

This commit is contained in:
Yiyun Liu 2024-12-29 22:33:37 -05:00
parent 8fc90f5935
commit 6eba80ed70
2 changed files with 135 additions and 183 deletions

View file

@ -1,7 +1,7 @@
From Ltac2 Require Ltac2. From Ltac2 Require Ltac2.
Import Ltac2.Notations. Import Ltac2.Notations.
Import Ltac2.Control. Import Ltac2.Control.
Require Import ssreflect. Require Import ssreflect ssrbool.
Require Import FunInd. Require Import FunInd.
Require Import Arith.Wf_nat. Require Import Arith.Wf_nat.
Require Import Psatz. Require Import Psatz.
@ -1049,26 +1049,28 @@ Qed.
Local Ltac prov_tac := sfirstorder use:depth_ren. Local Ltac prov_tac := sfirstorder use:depth_ren.
Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool. Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool.
(* Can consider combine prov and provU *) Definition prov_bind {n} p0 A0 B0 (a : Tm n) :=
#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt := match a with
prov A B (TBind _ A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0; | TBind p A B => p = p0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
prov A B (Abs a) := prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a; | _ => False
prov A B (App a b) := prov A B a; end.
prov A B (Pair a b) := prov A B a /\ prov A B b;
prov A B (Proj p a) := prov A B a;
prov A B Bot := False;
prov A B (VarTm _) := False;
prov A B (Univ _) := False .
#[tactic="prov_tac"]Equations provU {n} (i : nat) (a : Tm n) : Prop by wf (depth_tm a) lt := Definition prov_univ {n} i0 (a : Tm n) :=
provU i (TBind _ A0 B0) := False; match a with
provU i (Abs a) := provU i a; | Univ i => i = i0
provU i (App a b) := provU i a; | _ => False
provU i (Pair a b) := provU i a /\ provU i b; end.
provU i (Proj p a) := provU i a;
provU i Bot := False; (* Can consider combine prov and provU *)
provU i (VarTm _) := False; #[tactic="prov_tac"]Equations prov {n} (h : Tm n) (a : Tm n) : Prop by wf (depth_tm a) lt :=
provU i (Univ j) := i = j. prov h (TBind p0 A0 B0) := prov_bind p0 A0 B0 h;
prov h (Abs a) := prov (ren_Tm shift h) a;
prov h (App a b) := prov h a;
prov h (Pair a b) := prov h a /\ prov h b;
prov h (Proj p a) := prov h a;
prov h Bot := False;
prov h (VarTm _) := False;
prov h (Univ i) := prov_univ i h .
#[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := #[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (TBind p A B) := TBind p A B; extract (TBind p A B) := TBind p A B;
@ -1080,7 +1082,6 @@ Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool.
extract (VarTm i) := (VarTm i); extract (VarTm i) := (VarTm i);
extract (Univ i) := Univ i. extract (Univ i) := Univ i.
Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) : Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) :
extract (ren_Tm ξ a) = ren_Tm ξ (extract a). extract (ren_Tm ξ a) = ren_Tm ξ (extract a).
Proof. Proof.
@ -1112,91 +1113,80 @@ Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
lia. lia.
Qed. Qed.
Lemma prov_ren n m (ξ : fin n -> fin m) A B a : Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a :
prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). prov_bind p A B a ->
prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
Proof. Proof.
move : m ξ A B. elim : n / a. case : a => //=.
hauto l:on use:Pars.renaming.
Qed.
Lemma prov_ren n m (ξ : fin n -> fin m) h a :
prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a).
Proof.
move : m ξ h. elim : n / a.
- sfirstorder rew:db:prov. - sfirstorder rew:db:prov.
- move => n a ih m ξ A B. - move => n a ih m ξ h.
simp prov. simpl. simp prov.
move /ih => {ih}. move /ih => {ih}.
move /(_ _ (upRen_Tm_Tm ξ)). move /(_ _ (upRen_Tm_Tm ξ)) => /=.
simp prov. by asimpl. simp prov.
move => h0.
suff : ren_Tm (upRen_Tm_Tm ξ) (ren_Tm shift h) = ren_Tm shift (ren_Tm ξ h) by move => <-.
clear.
case : h => * /=; by asimpl.
- hauto q:on rew:db:prov. - hauto q:on rew:db:prov.
- qauto l:on rew:db:prov. - qauto l:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n p A0 ih B0 h0 m ξ A B. simpl. - hauto l:on use:prov_bind_ren rew:db:prov.
simp prov.
hauto l:on use:Pars.renaming.
- sfirstorder.
- sfirstorder. - sfirstorder.
- hauto l:on inv:Tm rew:db:prov.
Qed. Qed.
Lemma provU_ren n m (ξ : fin n -> fin m) i a : Definition hfb {n} (a : Tm n) :=
provU i a -> provU i (ren_Tm ξ a). match a with
Proof. | TBind _ _ _ => true
move : m ξ i. elim : n / a. | Univ _ => true
- sfirstorder rew:db:prov. | _ => false
- move => n a ih m ξ i. end.
simp provU =>/=.
move /ih => {ih}.
move /(_ _ (upRen_Tm_Tm ξ)).
simp provU.
- hauto q:on rew:db:provU.
- qauto l:on rew:db:provU.
- hauto lq:on rew:db:provU.
- move => n A0 ih B0 h0 m ξ i /=.
simp prov.
- sfirstorder.
- sfirstorder.
Qed.
Lemma prov_morph n m (ρ : fin n -> Tm m) A B a : Lemma prov_morph n m (ρ : fin n -> Tm m) h a :
prov A B a -> prov h a ->
prov (subst_Tm ρ A) (subst_Tm (up_Tm_Tm ρ) B) (subst_Tm ρ a). hfb h ->
prov (subst_Tm ρ h) (subst_Tm ρ a).
Proof. Proof.
move : m ρ A B. elim : n / a. move : m ρ h. elim : n / a.
- hauto q:on rew:db:prov. - hauto q:on rew:db:prov.
- move => n a ih m ρ A B. - move => n a ih m ρ h + hb.
simp prov => /=. simp prov => /=.
move /ih => {ih}. move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ)). asimpl. move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)).
simp prov. by asimpl. simp prov. by asimpl.
- hauto q:on rew:db:prov. - hauto q:on rew:db:prov.
- hauto q:on rew:db:prov. - hauto q:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- hauto l:on use:Pars.substing rew:db:prov. - move => n p A ihA B ihB m ρ h /=. simp prov => //= + h0.
- qauto rew:db:prov. case : h h0 => //=.
move => p0 A0 B0 _ [? [h1 h2]]. subst.
hauto l:on use:Pars.substing rew:db:prov.
- qauto rew:db:prov. - qauto rew:db:prov.
- hauto l:on inv:Tm rew:db:prov.
Qed. Qed.
Lemma provU_morph n m (ρ : fin n -> Tm m) i a : Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u.
provU i a -> Proof. move : m ξ. elim : n /u =>//=. Qed.
provU i (subst_Tm ρ a).
Proof.
move : m ρ i. elim : n / a.
- hauto q:on rew:db:provU.
- move => n a ih m ρ i.
simp provU => /=.
move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ)). asimpl.
simp provU.
- hauto q:on rew:db:provU.
- hauto q:on rew:db:provU.
- hauto lq:on rew:db:provU.
- hauto l:on use:Pars.substing rew:db:provU.
- qauto rew:db:provU.
- qauto rew:db:provU.
Qed.
Lemma prov_par n (A : Tm n) B a b : prov A B a -> Par.R a b -> prov A B b. Hint Rewrite @ren_hfb : prov.
Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b.
Proof. Proof.
move => + h. move : A B. move => + + h. move : u.
elim : n a b /h. elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb A B /=. - move => n a0 a1 b0 b1 ha iha hb ihb u /=.
simp prov => h. simp prov => h h0.
move /iha : h. have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb.
move /(prov_morph _ _ (scons b1 VarTm)). move /iha /(_ h1) : h.
move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1).
by asimpl. by asimpl.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
@ -1205,98 +1195,58 @@ Proof.
hauto l:on use:prov_ren. hauto l:on use:prov_ren.
- hauto l:on rew:db:prov. - hauto l:on rew:db:prov.
- simp prov. - simp prov.
- move => n a0 a1 ha iha A B. simp prov. - hauto lq:on rew:db:prov.
- hauto l:on rew:db:prov. - hauto l:on rew:db:prov.
- hauto l:on rew:db:prov. - hauto l:on rew:db:prov.
- hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov.
- move => n p A0 A1 B0 B1 hA ihA hB ihB A B. simp prov. - move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov.
move => [hA0 hA1]. case : u => //=.
eauto using rtc_r. move => p0 A B [? [h2 h3]]. subst.
move => ?. repeat split => //=;
hauto l:on use:rtc_r rew:db:prov.
- sfirstorder. - sfirstorder.
- sfirstorder. - sfirstorder.
Qed. Qed.
Lemma provU_par n i (a b : Tm n) : provU i a -> Par.R a b -> provU i b. Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b.
Proof. Proof.
move => + h. move : i. induction 3; hauto lq:on ctrs:rtc use:prov_par.
elim : n a b /h.
- move => n a0 a1 b0 b1 ha iha hb ihb i /=.
simp provU => h.
move /iha : h.
move /(provU_morph _ _ (scons b1 VarTm)).
by asimpl.
- hauto lq:on rew:db:provU.
- hauto lq:on rew:db:provU.
- hauto lq:on rew:db:provU.
- move => n a0 a1 ha iha i. simp provU. move /iha.
hauto l:on use:provU_ren.
- hauto l:on rew:db:provU.
- simp provU.
- move => n a0 a1 ha iha i. simp provU.
- hauto l:on rew:db:provU.
- hauto l:on rew:db:provU.
- hauto lq:on rew:db:provU.
- move => n p A0 A1 B0 B1 hA ihA hB ihB i. simp provU.
- sfirstorder.
- sfirstorder.
Qed. Qed.
Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b. Definition prov_extract_spec {n} u (a : Tm n) :=
Proof. match u with
induction 2; hauto lq:on use:prov_par. | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0
Qed. | Univ i => extract a = Univ i
| _ => True
end.
Lemma provU_pars n i (a : Tm n) b : provU i a -> rtc Par.R a b -> provU i b. Lemma prov_extract n u (a : Tm n) :
prov u a -> prov_extract_spec u a.
Proof. Proof.
induction 2; hauto lq:on use:provU_par. move : u. elim : n / a => //=.
Qed. - move => n a ih [] //=.
+ move => p A B /=.
Lemma prov_extract n p A B (a : Tm n) : simp prov. move /ih {ih}.
prov A B a -> exists A0 B0, simpl.
extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. move => [A0[B0[h [h0 h1]]]].
Proof. have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0
move : A B. elim : n / a => //=. by hauto l:on use:Pars.antirenaming.
- move => n a ih A B. move => [A1 [h3 h4]].
simp prov. have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
move /ih. by hauto l:on use:Pars.antirenaming.
simp extract. move => [B1 [h5 h6]].
move => [A0][B0][h0][h1]h2. subst.
(* anti renaming for par *) have {}h0 : subst_Tm (scons Bot VarTm) (extract a) =
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on.
by hauto l:on use:Pars.antirenaming. move : h0. asimpl.
move => [A1 [h3 h4]]. hauto lq:on rew:db:extract.
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 + hauto q:on rew:db:extract, prov.
by hauto l:on use:Pars.antirenaming. - hauto lq:on rew:off inv:Tm rew:db:prov, extract.
move => [B1 [h5 h6]]. - move => + + + + + []//=;
subst. hauto lq:on rew:off rew:db:prov, extract.
have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = - hauto inv:Tm l:on rew:db:prov, extract.
subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on. - hauto l:on inv:Tm rew:db:prov, extract.
move : h0. asimpl. move => ->. - hauto l:on inv:Tm rew:db:prov, extract.
hauto lq:on.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- best rew:db:prov, extract.
Qed.
Lemma provU_extract n i (a : Tm n) :
provU i a -> extract a = Univ i.
Proof.
move : i. elim : n / a => //=.
- move => n a ih i.
simp provU.
move /ih.
simp extract.
move => h.
(* anti renaming for par *)
have {}h0 : subst_Tm (scons Bot VarTm) (extract a) =
subst_Tm (scons Bot VarTm) (ren_Tm shift (Univ i)) by sauto lq:on.
move : h0. asimpl. move => ->.
hauto lq:on.
- hauto l:on rew:db:provU, extract.
- hauto l:on rew:db:provU, extract.
- hauto l:on rew:db:provU, extract.
- qauto l:on rew:db:provU, extract.
Qed. Qed.
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
@ -1375,10 +1325,10 @@ Module ERPar.
- sfirstorder use:EPar.AppCong, @rtc_once. - sfirstorder use:EPar.AppCong, @rtc_once.
Qed. Qed.
Lemma BindCong n (a0 a1 : Tm n) b0 b1: Lemma BindCong n p (a0 a1 : Tm n) b0 b1:
R a0 a1 -> R a0 a1 ->
R b0 b1 -> R b0 b1 ->
rtc R (Pi a0 b0) (Pi a1 b1). rtc R (TBind p a0 b0) (TBind p a1 b1).
Proof. Proof.
move => [] + []. move => [] + [].
- sfirstorder use:RPar.BindCong, @rtc_once. - sfirstorder use:RPar.BindCong, @rtc_once.
@ -1454,10 +1404,10 @@ Module ERPars.
rtc ERPar.R (Proj p a0) (Proj p a1). rtc ERPar.R (Proj p a0) (Proj p a1).
Proof. solve_s. Qed. Proof. solve_s. Qed.
Lemma BindCong n (a0 a1 : Tm n) b0 b1: Lemma BindCong n p (a0 a1 : Tm n) b0 b1:
rtc ERPar.R a0 a1 -> rtc ERPar.R a0 a1 ->
rtc ERPar.R b0 b1 -> rtc ERPar.R b0 b1 ->
rtc ERPar.R (Pi a0 b0) (Pi a1 b1). rtc ERPar.R (TBind p a0 b0) (TBind p a1 b1).
Proof. solve_s. Qed. Proof. solve_s. Qed.
Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
@ -1690,18 +1640,20 @@ Lemma pars_univ_inv n i (c : Tm n) :
rtc Par.R (Univ i) c -> rtc Par.R (Univ i) c ->
extract c = Univ i. extract c = Univ i.
Proof. Proof.
have : provU i (Univ i : Tm n) by sfirstorder. have : prov (Univ i) (Univ i : Tm n) by sfirstorder.
move : provU_pars. repeat move/[apply]. move : prov_pars. repeat move/[apply].
by move/provU_extract. move /(_ ltac:(reflexivity)).
by move/prov_extract.
Qed. Qed.
Lemma pars_pi_inv n (A : Tm n) B C : Lemma pars_pi_inv n p (A : Tm n) B C :
rtc Par.R (Pi A B) C -> rtc Par.R (TBind p A B) C ->
exists A0 B0, extract C = Pi A0 B0 /\ exists A0 B0, extract C = TBind p A0 B0 /\
rtc Par.R A A0 /\ rtc Par.R B B0. rtc Par.R A A0 /\ rtc Par.R B B0.
Proof. Proof.
have : prov A B (Pi A B) by sfirstorder. have : prov (TBind p A B) (TBind p A B) by sfirstorder.
move : prov_pars. repeat move/[apply]. move : prov_pars. repeat move/[apply].
move /(_ eq_refl).
by move /prov_extract. by move /prov_extract.
Qed. Qed.
@ -1713,10 +1665,10 @@ Proof.
sauto l:on use:pars_univ_inv. sauto l:on use:pars_univ_inv.
Qed. Qed.
Lemma pars_pi_inj n (A0 A1 : Tm n) B0 B1 C : Lemma pars_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 C :
rtc Par.R (Pi A0 B0) C -> rtc Par.R (TBind p0 A0 B0) C ->
rtc Par.R (Pi A1 B1) C -> rtc Par.R (TBind p1 A1 B1) C ->
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ exists A2 B2, p1 = p0 /\ rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
rtc Par.R B0 B2 /\ rtc Par.R B1 B2. rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
Proof. Proof.
move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]]. move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]].
@ -1730,17 +1682,17 @@ Proof.
sfirstorder use:pars_univ_inj. sfirstorder use:pars_univ_inj.
Qed. Qed.
Lemma join_pi_inj n (A0 A1 : Tm n) B0 B1 : Lemma join_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 :
join (Pi A0 B0) (Pi A1 B1) -> join (TBind p0 A0 B0) (TBind p1 A1 B1) ->
join A0 A1 /\ join B0 B1. p0 = p1 /\ join A0 A1 /\ join B0 B1.
Proof. Proof.
move => [c []]. move => [c []].
move : pars_pi_inj; repeat move/[apply]. move : pars_pi_inj; repeat move/[apply].
sfirstorder unfold:join. sfirstorder unfold:join.
Qed. Qed.
Lemma join_univ_pi_contra n (A : Tm n) B i : Lemma join_univ_pi_contra n p (A : Tm n) B i :
join (Pi A B) (Univ i) -> False. join (TBind p A B) (Univ i) -> False.
Proof. Proof.
rewrite /join. rewrite /join.
move => [c [h0 h1]]. move => [c [h0 h1]].