diff --git a/syntax.sig b/syntax.sig index aee89b0..4549f7f 100644 --- a/syntax.sig +++ b/syntax.sig @@ -13,4 +13,4 @@ Pair : Tm -> Tm -> Tm Proj : PTag -> Tm -> Tm TBind : TTag -> Tm -> (bind Tm in Tm) -> Tm Bot : Tm -Univ : nat -> Tm \ No newline at end of file +Univ : nat -> Tm diff --git a/theories/fp_red.v b/theories/fp_red.v index 4c1859e..2bc9aff 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1,7 +1,7 @@ From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. -Require Import ssreflect. +Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat. Require Import Psatz. @@ -1049,26 +1049,28 @@ Qed. Local Ltac prov_tac := sfirstorder use:depth_ren. Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool. -(* Can consider combine prov and provU *) -#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt := - prov A B (TBind _ A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0; - prov A B (Abs a) := prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a; - prov A B (App a b) := prov A B a; - prov A B (Pair a b) := prov A B a /\ prov A B b; - prov A B (Proj p a) := prov A B a; - prov A B Bot := False; - prov A B (VarTm _) := False; - prov A B (Univ _) := False . +Definition prov_bind {n} p0 A0 B0 (a : Tm n) := + match a with + | TBind p A B => p = p0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 + | _ => False + end. -#[tactic="prov_tac"]Equations provU {n} (i : nat) (a : Tm n) : Prop by wf (depth_tm a) lt := - provU i (TBind _ A0 B0) := False; - provU i (Abs a) := provU i a; - provU i (App a b) := provU i a; - provU i (Pair a b) := provU i a /\ provU i b; - provU i (Proj p a) := provU i a; - provU i Bot := False; - provU i (VarTm _) := False; - provU i (Univ j) := i = j. +Definition prov_univ {n} i0 (a : Tm n) := + match a with + | Univ i => i = i0 + | _ => False + end. + +(* Can consider combine prov and provU *) +#[tactic="prov_tac"]Equations prov {n} (h : Tm n) (a : Tm n) : Prop by wf (depth_tm a) lt := + prov h (TBind p0 A0 B0) := prov_bind p0 A0 B0 h; + prov h (Abs a) := prov (ren_Tm shift h) a; + prov h (App a b) := prov h a; + prov h (Pair a b) := prov h a /\ prov h b; + prov h (Proj p a) := prov h a; + prov h Bot := False; + prov h (VarTm _) := False; + prov h (Univ i) := prov_univ i h . #[tactic="prov_tac"]Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt := extract (TBind p A B) := TBind p A B; @@ -1080,7 +1082,6 @@ Local Ltac extract_tac := rewrite -?depth_subst_bool;hauto use:depth_subst_bool. extract (VarTm i) := (VarTm i); extract (Univ i) := Univ i. - Lemma ren_extract n m (a : Tm n) (ξ : fin n -> fin m) : extract (ren_Tm ξ a) = ren_Tm ξ (extract a). Proof. @@ -1112,91 +1113,80 @@ Lemma tm_depth_ind (P : forall n, Tm n -> Prop) : lia. Qed. -Lemma prov_ren n m (ξ : fin n -> fin m) A B a : - prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). +Lemma prov_bind_ren n m p (A : Tm n) B (ξ : fin n -> fin m) a : + prov_bind p A B a -> + prov_bind p (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a). Proof. - move : m ξ A B. elim : n / a. + case : a => //=. + hauto l:on use:Pars.renaming. +Qed. + +Lemma prov_ren n m (ξ : fin n -> fin m) h a : + prov h a -> prov (ren_Tm ξ h) (ren_Tm ξ a). +Proof. + move : m ξ h. elim : n / a. - sfirstorder rew:db:prov. - - move => n a ih m ξ A B. - simp prov. simpl. + - move => n a ih m ξ h. + simp prov. move /ih => {ih}. - move /(_ _ (upRen_Tm_Tm ξ)). - simp prov. by asimpl. + move /(_ _ (upRen_Tm_Tm ξ)) => /=. + simp prov. + move => h0. + suff : ren_Tm (upRen_Tm_Tm ξ) (ren_Tm shift h) = ren_Tm shift (ren_Tm ξ h) by move => <-. + clear. + case : h => * /=; by asimpl. - hauto q:on rew:db:prov. - qauto l:on rew:db:prov. - hauto lq:on rew:db:prov. - - move => n p A0 ih B0 h0 m ξ A B. simpl. - simp prov. - hauto l:on use:Pars.renaming. - - sfirstorder. + - hauto l:on use:prov_bind_ren rew:db:prov. - sfirstorder. + - hauto l:on inv:Tm rew:db:prov. Qed. -Lemma provU_ren n m (ξ : fin n -> fin m) i a : - provU i a -> provU i (ren_Tm ξ a). -Proof. - move : m ξ i. elim : n / a. - - sfirstorder rew:db:prov. - - move => n a ih m ξ i. - simp provU =>/=. - move /ih => {ih}. - move /(_ _ (upRen_Tm_Tm ξ)). - simp provU. - - hauto q:on rew:db:provU. - - qauto l:on rew:db:provU. - - hauto lq:on rew:db:provU. - - move => n A0 ih B0 h0 m ξ i /=. - simp prov. - - sfirstorder. - - sfirstorder. -Qed. +Definition hfb {n} (a : Tm n) := + match a with + | TBind _ _ _ => true + | Univ _ => true + | _ => false + end. -Lemma prov_morph n m (ρ : fin n -> Tm m) A B a : - prov A B a -> - prov (subst_Tm ρ A) (subst_Tm (up_Tm_Tm ρ) B) (subst_Tm ρ a). +Lemma prov_morph n m (ρ : fin n -> Tm m) h a : + prov h a -> + hfb h -> + prov (subst_Tm ρ h) (subst_Tm ρ a). Proof. - move : m ρ A B. elim : n / a. + move : m ρ h. elim : n / a. - hauto q:on rew:db:prov. - - move => n a ih m ρ A B. + - move => n a ih m ρ h + hb. simp prov => /=. move /ih => {ih}. - move /(_ _ (up_Tm_Tm ρ)). asimpl. + move /(_ _ (up_Tm_Tm ρ) ltac:(hauto lq:on inv:Tm)). simp prov. by asimpl. - hauto q:on rew:db:prov. - hauto q:on rew:db:prov. - hauto lq:on rew:db:prov. - - hauto l:on use:Pars.substing rew:db:prov. - - qauto rew:db:prov. + - move => n p A ihA B ihB m ρ h /=. simp prov => //= + h0. + case : h h0 => //=. + move => p0 A0 B0 _ [? [h1 h2]]. subst. + hauto l:on use:Pars.substing rew:db:prov. - qauto rew:db:prov. + - hauto l:on inv:Tm rew:db:prov. Qed. -Lemma provU_morph n m (ρ : fin n -> Tm m) i a : - provU i a -> - provU i (subst_Tm ρ a). -Proof. - move : m ρ i. elim : n / a. - - hauto q:on rew:db:provU. - - move => n a ih m ρ i. - simp provU => /=. - move /ih => {ih}. - move /(_ _ (up_Tm_Tm ρ)). asimpl. - simp provU. - - hauto q:on rew:db:provU. - - hauto q:on rew:db:provU. - - hauto lq:on rew:db:provU. - - hauto l:on use:Pars.substing rew:db:provU. - - qauto rew:db:provU. - - qauto rew:db:provU. -Qed. +Lemma ren_hfb {n m} (ξ : fin n -> fin m) u : hfb (ren_Tm ξ u) = hfb u. +Proof. move : m ξ. elim : n /u =>//=. Qed. -Lemma prov_par n (A : Tm n) B a b : prov A B a -> Par.R a b -> prov A B b. +Hint Rewrite @ren_hfb : prov. + +Lemma prov_par n (u : Tm n) a b : prov u a -> hfb u -> Par.R a b -> prov u b. Proof. - move => + h. move : A B. + move => + + h. move : u. elim : n a b /h. - - move => n a0 a1 b0 b1 ha iha hb ihb A B /=. - simp prov => h. - move /iha : h. - move /(prov_morph _ _ (scons b1 VarTm)). + - move => n a0 a1 b0 b1 ha iha hb ihb u /=. + simp prov => h h0. + have h1 : hfb (ren_Tm shift u) by eauto using ren_hfb. + move /iha /(_ h1) : h. + move /(prov_morph _ _ (scons b1 VarTm)) /(_ h1). by asimpl. - hauto lq:on rew:db:prov. - hauto lq:on rew:db:prov. @@ -1205,98 +1195,58 @@ Proof. hauto l:on use:prov_ren. - hauto l:on rew:db:prov. - simp prov. - - move => n a0 a1 ha iha A B. simp prov. + - hauto lq:on rew:db:prov. - hauto l:on rew:db:prov. - hauto l:on rew:db:prov. - hauto lq:on rew:db:prov. - - move => n p A0 A1 B0 B1 hA ihA hB ihB A B. simp prov. - move => [hA0 hA1]. - eauto using rtc_r. + - move => n p A0 A1 B0 B1 hA ihA hB ihB u. simp prov. + case : u => //=. + move => p0 A B [? [h2 h3]]. subst. + move => ?. repeat split => //=; + hauto l:on use:rtc_r rew:db:prov. - sfirstorder. - sfirstorder. Qed. -Lemma provU_par n i (a b : Tm n) : provU i a -> Par.R a b -> provU i b. +Lemma prov_pars n (u : Tm n) a b : hfb u -> prov u a -> rtc Par.R a b -> prov u b. Proof. - move => + h. move : i. - elim : n a b /h. - - move => n a0 a1 b0 b1 ha iha hb ihb i /=. - simp provU => h. - move /iha : h. - move /(provU_morph _ _ (scons b1 VarTm)). - by asimpl. - - hauto lq:on rew:db:provU. - - hauto lq:on rew:db:provU. - - hauto lq:on rew:db:provU. - - move => n a0 a1 ha iha i. simp provU. move /iha. - hauto l:on use:provU_ren. - - hauto l:on rew:db:provU. - - simp provU. - - move => n a0 a1 ha iha i. simp provU. - - hauto l:on rew:db:provU. - - hauto l:on rew:db:provU. - - hauto lq:on rew:db:provU. - - move => n p A0 A1 B0 B1 hA ihA hB ihB i. simp provU. - - sfirstorder. - - sfirstorder. + induction 3; hauto lq:on ctrs:rtc use:prov_par. Qed. -Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b. -Proof. - induction 2; hauto lq:on use:prov_par. -Qed. +Definition prov_extract_spec {n} u (a : Tm n) := + match u with + | TBind p A B => exists A0 B0, extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0 + | Univ i => extract a = Univ i + | _ => True + end. -Lemma provU_pars n i (a : Tm n) b : provU i a -> rtc Par.R a b -> provU i b. +Lemma prov_extract n u (a : Tm n) : + prov u a -> prov_extract_spec u a. Proof. - induction 2; hauto lq:on use:provU_par. -Qed. - -Lemma prov_extract n p A B (a : Tm n) : - prov A B a -> exists A0 B0, - extract a = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. -Proof. - move : A B. elim : n / a => //=. - - move => n a ih A B. - simp prov. - move /ih. - simp extract. - move => [A0][B0][h0][h1]h2. - (* anti renaming for par *) - have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 - by hauto l:on use:Pars.antirenaming. - move => [A1 [h3 h4]]. - have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 - by hauto l:on use:Pars.antirenaming. - move => [B1 [h5 h6]]. - subst. - have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = - subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on. - move : h0. asimpl. move => ->. - hauto lq:on. - - hauto l:on rew:db:prov, extract. - - hauto l:on rew:db:prov, extract. - - hauto l:on rew:db:prov, extract. - - best rew:db:prov, extract. -Qed. - -Lemma provU_extract n i (a : Tm n) : - provU i a -> extract a = Univ i. -Proof. - move : i. elim : n / a => //=. - - move => n a ih i. - simp provU. - move /ih. - simp extract. - move => h. - (* anti renaming for par *) - have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = - subst_Tm (scons Bot VarTm) (ren_Tm shift (Univ i)) by sauto lq:on. - move : h0. asimpl. move => ->. - hauto lq:on. - - hauto l:on rew:db:provU, extract. - - hauto l:on rew:db:provU, extract. - - hauto l:on rew:db:provU, extract. - - qauto l:on rew:db:provU, extract. + move : u. elim : n / a => //=. + - move => n a ih [] //=. + + move => p A B /=. + simp prov. move /ih {ih}. + simpl. + move => [A0[B0[h [h0 h1]]]]. + have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 + by hauto l:on use:Pars.antirenaming. + move => [A1 [h3 h4]]. + have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0 + by hauto l:on use:Pars.antirenaming. + move => [B1 [h5 h6]]. + subst. + have {}h0 : subst_Tm (scons Bot VarTm) (extract a) = + subst_Tm (scons Bot VarTm) (ren_Tm shift (TBind p A1 B1)) by sauto lq:on. + move : h0. asimpl. + hauto lq:on rew:db:extract. + + hauto q:on rew:db:extract, prov. + - hauto lq:on rew:off inv:Tm rew:db:prov, extract. + - move => + + + + + []//=; + hauto lq:on rew:off rew:db:prov, extract. + - hauto inv:Tm l:on rew:db:prov, extract. + - hauto l:on inv:Tm rew:db:prov, extract. + - hauto l:on inv:Tm rew:db:prov, extract. Qed. Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b. @@ -1375,10 +1325,10 @@ Module ERPar. - sfirstorder use:EPar.AppCong, @rtc_once. Qed. - Lemma BindCong n (a0 a1 : Tm n) b0 b1: + Lemma BindCong n p (a0 a1 : Tm n) b0 b1: R a0 a1 -> R b0 b1 -> - rtc R (Pi a0 b0) (Pi a1 b1). + rtc R (TBind p a0 b0) (TBind p a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.BindCong, @rtc_once. @@ -1454,10 +1404,10 @@ Module ERPars. rtc ERPar.R (Proj p a0) (Proj p a1). Proof. solve_s. Qed. - Lemma BindCong n (a0 a1 : Tm n) b0 b1: + Lemma BindCong n p (a0 a1 : Tm n) b0 b1: rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> - rtc ERPar.R (Pi a0 b0) (Pi a1 b1). + rtc ERPar.R (TBind p a0 b0) (TBind p a1 b1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) : @@ -1690,18 +1640,20 @@ Lemma pars_univ_inv n i (c : Tm n) : rtc Par.R (Univ i) c -> extract c = Univ i. Proof. - have : provU i (Univ i : Tm n) by sfirstorder. - move : provU_pars. repeat move/[apply]. - by move/provU_extract. + have : prov (Univ i) (Univ i : Tm n) by sfirstorder. + move : prov_pars. repeat move/[apply]. + move /(_ ltac:(reflexivity)). + by move/prov_extract. Qed. -Lemma pars_pi_inv n (A : Tm n) B C : - rtc Par.R (Pi A B) C -> - exists A0 B0, extract C = Pi A0 B0 /\ +Lemma pars_pi_inv n p (A : Tm n) B C : + rtc Par.R (TBind p A B) C -> + exists A0 B0, extract C = TBind p A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0. Proof. - have : prov A B (Pi A B) by sfirstorder. + have : prov (TBind p A B) (TBind p A B) by sfirstorder. move : prov_pars. repeat move/[apply]. + move /(_ eq_refl). by move /prov_extract. Qed. @@ -1713,10 +1665,10 @@ Proof. sauto l:on use:pars_univ_inv. Qed. -Lemma pars_pi_inj n (A0 A1 : Tm n) B0 B1 C : - rtc Par.R (Pi A0 B0) C -> - rtc Par.R (Pi A1 B1) C -> - exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ +Lemma pars_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 C : + rtc Par.R (TBind p0 A0 B0) C -> + rtc Par.R (TBind p1 A1 B1) C -> + exists A2 B2, p1 = p0 /\ rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\ rtc Par.R B0 B2 /\ rtc Par.R B1 B2. Proof. move /pars_pi_inv => [A2 [B2 [? [h0 h1]]]]. @@ -1730,17 +1682,17 @@ Proof. sfirstorder use:pars_univ_inj. Qed. -Lemma join_pi_inj n (A0 A1 : Tm n) B0 B1 : - join (Pi A0 B0) (Pi A1 B1) -> - join A0 A1 /\ join B0 B1. +Lemma join_pi_inj n p0 p1 (A0 A1 : Tm n) B0 B1 : + join (TBind p0 A0 B0) (TBind p1 A1 B1) -> + p0 = p1 /\ join A0 A1 /\ join B0 B1. Proof. move => [c []]. move : pars_pi_inj; repeat move/[apply]. sfirstorder unfold:join. Qed. -Lemma join_univ_pi_contra n (A : Tm n) B i : - join (Pi A B) (Univ i) -> False. +Lemma join_univ_pi_contra n p (A : Tm n) B i : + join (TBind p A B) (Univ i) -> False. Proof. rewrite /join. move => [c [h0 h1]].