Finish proving commutativity

This commit is contained in:
Yiyun Liu 2025-01-12 23:38:15 -05:00
parent 433eef83ae
commit 4d40dcf8d4

View file

@ -1936,6 +1936,34 @@ Proof.
apply rtc_once. apply : CRRed.ProjAbs. apply rtc_once. apply : CRRed.ProjAbs.
Qed. Qed.
Lemma BVal_EPar_If n (v : bool) q :
EPar.R (BVal v : Tm n) q ->
forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (if v then b else c) e.
Proof.
move E :(BVal v) => u h. move : v E.
elim : n u q /h => //=.
- move => n a0 a1 ha iha v ? b c. subst.
spec_refl.
move /(_ b c) : iha => [e [h0 h1]].
eexists. split; cycle 1.
apply : rtc_r; eauto. apply OExp.AppEta.
apply : rtc_l. apply CRRed.IfAbs.
apply CRReds.AbsCong.
apply : rtc_l. apply CRRed.IfApp.
apply CRReds.AppCong; auto using rtc_refl.
set (x := If _ _ _).
change x with (ren_Tm shift (If a1 b c)).
eauto using CRReds.renaming.
- move => n a0 a1 ha iha v ? b c. subst.
spec_refl.
move /(_ b c) : iha => [e [h0 h1]].
eexists; split; cycle 1.
apply : rtc_r; eauto. apply OExp.PairEta.
apply : rtc_l. apply CRRed.IfPair.
apply CRReds.PairCong; hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong.
- sauto lq:on.
Qed.
Lemma Proj_EPar_If n p (a : Tm n) q : Lemma Proj_EPar_If n p (a : Tm n) q :
EPar.R (Proj p a) q -> EPar.R (Proj p a) q ->
exists d, EPar.R a d /\ exists d, EPar.R a d /\
@ -1974,6 +2002,43 @@ Proof.
- sauto lq:on rew:off. - sauto lq:on rew:off.
Qed. Qed.
Lemma App_EPar_If n (r0 r1 : Tm n) q :
EPar.R (App r0 r1) q ->
exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\
forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (App (If d0 b c) d1) e.
Proof.
move E : (App r0 r1) => u h.
move : r0 r1 E.
elim : n u q /h => //= n.
- move => a0 a1 ha iha r0 r1 ?. subst.
spec_refl.
move : iha => [d0 [d1 [ih0 [ih1 ih2]]]].
exists d0, d1. repeat split => //.
move => b c.
move /(_ b c) : ih2 => [e [h0 h1]].
eexists; split; cycle 1.
apply : rtc_r; eauto.
apply OExp.AppEta.
apply : rtc_l. apply CRRed.IfAbs.
apply CRReds.AbsCong.
apply : rtc_l. apply CRRed.IfApp.
apply CRReds.AppCong; auto using rtc_refl.
set (x := If _ _ _).
change x with (ren_Tm shift (If a1 b c)).
auto using CRReds.renaming.
- move => a0 a1 ha iha r0 r1 ?. subst.
spec_refl. move : iha => [d0 [d1 [ih0 [ih1 ih2]]]].
exists d0, d1. (repeat split) => // b c.
move /(_ b c) : ih2 => [d [h0 h1]].
eexists; split; cycle 1.
apply : rtc_r; eauto.
apply OExp.PairEta.
apply : rtc_l. apply CRRed.IfPair.
apply CRReds.PairCong;
hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong, CRReds.AppCong.
- sauto lq:on.
Qed.
Lemma Pair_EPar_If n (r0 r1 : Tm n) q : Lemma Pair_EPar_If n (r0 r1 : Tm n) q :
EPar.R (Pair r0 r1) q -> EPar.R (Pair r0 r1) q ->
exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\ exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\
@ -2190,10 +2255,16 @@ Proof.
exists e. split => //. exists e. split => //.
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge. hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
+ move => a2 b2 c [*] {iha ihb ihc}. subst. + move => a2 b2 c [*] {iha ihb ihc}. subst.
admit. move /BVal_EPar_If : ha.
move /(_ b1 c1) => [e [h0 h1]].
exists e. split => //.
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
+ (* Need the rule that if commutes with abs *) + (* Need the rule that if commutes with abs *)
move => a2 b2 c d [*]. subst. move => a2 b2 c d {iha ihb ihc} [*]. subst.
admit. move /App_EPar_If : ha => [r0 [r1 [h0 [h1 h2]]]].
move /(_ b1 c1) : h2 => [e [h3 h4]].
exists e. split => //.
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
+ move => p a2 b2 c [*]. subst. + move => p a2 b2 c [*]. subst.
move {iha ihb ihc}. move {iha ihb ihc}.
move /Proj_EPar_If : ha => [d [h0 /(_ b1 c1) [e [h1 h2]]]]. move /Proj_EPar_If : ha => [d [h0 /(_ b1 c1) [e [h1 h2]]]].
@ -2211,10 +2282,10 @@ Proof.
move /ihc => {ihc} [c [? ?]]. move /ihc => {ihc} [c [? ?]].
exists (If a1 b1 c). exists (If a1 b1 c).
hauto lq:on ctrs:rtc,EPar.R use:CRReds.IfCong. hauto lq:on ctrs:rtc,EPar.R use:CRReds.IfCong.
Admitted. Qed.
Lemma commutativity1 n (a b0 b1 : Tm n) : Lemma commutativity1 n (a b0 b1 : Tm n) :
EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ EPar.R b1 c.
Proof. Proof.
move => + h. move : b0. move => + h. move : b0.
elim : a b1 / h. elim : a b1 / h.
@ -2223,7 +2294,7 @@ Proof.
Qed. Qed.
Lemma commutativity n (a b0 b1 : Tm n) : Lemma commutativity n (a b0 b1 : Tm n) :
rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. rtc EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ rtc EPar.R b1 c.
move => h. move : b1. elim : a b0 /h. move => h. move : b1. elim : a b0 /h.
- sfirstorder. - sfirstorder.
- move => a0 a1 a2 + ha1 ih b1 +. - move => a0 a1 a2 + ha1 ih b1 +.
@ -2392,55 +2463,49 @@ Proof.
- admit. - admit.
Admitted. Admitted.
Function tstar' {n} (a : Tm n) := (* Function tstar' {n} (a : Tm n) := *)
match a with (* match a with *)
| VarTm i => a (* | VarTm i => a *)
| Abs a => Abs (tstar' a) (* | Abs a => Abs (tstar' a) *)
| App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) (* | App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) *)
| App a b => App (tstar' a) (tstar' b) (* | App a b => App (tstar' a) (tstar' b) *)
| Pair a b => Pair (tstar' a) (tstar' b) (* | Pair a b => Pair (tstar' a) (tstar' b) *)
| Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) (* | Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) *)
| Proj p a => Proj p (tstar' a) (* | Proj p a => Proj p (tstar' a) *)
| TBind p a b => TBind p (tstar' a) (tstar' b) (* | TBind p a b => TBind p (tstar' a) (tstar' b) *)
| Bot => Bot (* | Bot => Bot *)
| Univ i => Univ i (* | Univ i => Univ i *)
end. (* end. *)
Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). (* Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). *)
Proof. (* Proof. *)
apply tstar'_ind => {n a}. (* apply tstar'_ind => {n a}. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
- hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. (* - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. *)
- hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. (* - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. *)
- hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. *)
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. (* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *)
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. (* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
- hauto lq:on inv:RPar'.R ctrs:RPar'.R. (* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
Qed. (* Qed. *)
Lemma RPar_diamond n (c a1 b1 : Tm n) : (* Lemma RPar'_diamond n (c a1 b1 : Tm n) : *)
RPar.R c a1 -> (* RPar'.R c a1 -> *)
RPar.R c b1 -> (* RPar'.R c b1 -> *)
exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. (* exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. *)
Proof. hauto l:on use:RPar_triangle. Qed. (* Proof. hauto l:on use:RPar'_triangle. Qed. *)
Lemma RPar'_diamond n (c a1 b1 : Tm n) : (* Lemma RPar_confluent n (c a1 b1 : Tm n) : *)
RPar'.R c a1 -> (* rtc RPar.R c a1 -> *)
RPar'.R c b1 -> (* rtc RPar.R c b1 -> *)
exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. (* exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. *)
Proof. hauto l:on use:RPar'_triangle. Qed. (* Proof. *)
(* sfirstorder use:relations.diamond_confluent, RPar_diamond. *)
Lemma RPar_confluent n (c a1 b1 : Tm n) : (* Qed. *)
rtc RPar.R c a1 ->
rtc RPar.R c b1 ->
exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2.
Proof.
sfirstorder use:relations.diamond_confluent, RPar_diamond.
Qed.
Lemma EPar_confluent n (c a1 b1 : Tm n) : Lemma EPar_confluent n (c a1 b1 : Tm n) :
rtc EPar.R c a1 -> rtc EPar.R c a1 ->