Finish proving commutativity
This commit is contained in:
parent
433eef83ae
commit
4d40dcf8d4
1 changed files with 117 additions and 52 deletions
|
@ -1936,6 +1936,34 @@ Proof.
|
||||||
apply rtc_once. apply : CRRed.ProjAbs.
|
apply rtc_once. apply : CRRed.ProjAbs.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma BVal_EPar_If n (v : bool) q :
|
||||||
|
EPar.R (BVal v : Tm n) q ->
|
||||||
|
forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (if v then b else c) e.
|
||||||
|
Proof.
|
||||||
|
move E :(BVal v) => u h. move : v E.
|
||||||
|
elim : n u q /h => //=.
|
||||||
|
- move => n a0 a1 ha iha v ? b c. subst.
|
||||||
|
spec_refl.
|
||||||
|
move /(_ b c) : iha => [e [h0 h1]].
|
||||||
|
eexists. split; cycle 1.
|
||||||
|
apply : rtc_r; eauto. apply OExp.AppEta.
|
||||||
|
apply : rtc_l. apply CRRed.IfAbs.
|
||||||
|
apply CRReds.AbsCong.
|
||||||
|
apply : rtc_l. apply CRRed.IfApp.
|
||||||
|
apply CRReds.AppCong; auto using rtc_refl.
|
||||||
|
set (x := If _ _ _).
|
||||||
|
change x with (ren_Tm shift (If a1 b c)).
|
||||||
|
eauto using CRReds.renaming.
|
||||||
|
- move => n a0 a1 ha iha v ? b c. subst.
|
||||||
|
spec_refl.
|
||||||
|
move /(_ b c) : iha => [e [h0 h1]].
|
||||||
|
eexists; split; cycle 1.
|
||||||
|
apply : rtc_r; eauto. apply OExp.PairEta.
|
||||||
|
apply : rtc_l. apply CRRed.IfPair.
|
||||||
|
apply CRReds.PairCong; hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong.
|
||||||
|
- sauto lq:on.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma Proj_EPar_If n p (a : Tm n) q :
|
Lemma Proj_EPar_If n p (a : Tm n) q :
|
||||||
EPar.R (Proj p a) q ->
|
EPar.R (Proj p a) q ->
|
||||||
exists d, EPar.R a d /\
|
exists d, EPar.R a d /\
|
||||||
|
@ -1974,6 +2002,43 @@ Proof.
|
||||||
- sauto lq:on rew:off.
|
- sauto lq:on rew:off.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma App_EPar_If n (r0 r1 : Tm n) q :
|
||||||
|
EPar.R (App r0 r1) q ->
|
||||||
|
exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\
|
||||||
|
forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (App (If d0 b c) d1) e.
|
||||||
|
Proof.
|
||||||
|
move E : (App r0 r1) => u h.
|
||||||
|
move : r0 r1 E.
|
||||||
|
elim : n u q /h => //= n.
|
||||||
|
- move => a0 a1 ha iha r0 r1 ?. subst.
|
||||||
|
spec_refl.
|
||||||
|
move : iha => [d0 [d1 [ih0 [ih1 ih2]]]].
|
||||||
|
exists d0, d1. repeat split => //.
|
||||||
|
move => b c.
|
||||||
|
move /(_ b c) : ih2 => [e [h0 h1]].
|
||||||
|
eexists; split; cycle 1.
|
||||||
|
apply : rtc_r; eauto.
|
||||||
|
apply OExp.AppEta.
|
||||||
|
apply : rtc_l. apply CRRed.IfAbs.
|
||||||
|
apply CRReds.AbsCong.
|
||||||
|
apply : rtc_l. apply CRRed.IfApp.
|
||||||
|
apply CRReds.AppCong; auto using rtc_refl.
|
||||||
|
set (x := If _ _ _).
|
||||||
|
change x with (ren_Tm shift (If a1 b c)).
|
||||||
|
auto using CRReds.renaming.
|
||||||
|
- move => a0 a1 ha iha r0 r1 ?. subst.
|
||||||
|
spec_refl. move : iha => [d0 [d1 [ih0 [ih1 ih2]]]].
|
||||||
|
exists d0, d1. (repeat split) => // b c.
|
||||||
|
move /(_ b c) : ih2 => [d [h0 h1]].
|
||||||
|
eexists; split; cycle 1.
|
||||||
|
apply : rtc_r; eauto.
|
||||||
|
apply OExp.PairEta.
|
||||||
|
apply : rtc_l. apply CRRed.IfPair.
|
||||||
|
apply CRReds.PairCong;
|
||||||
|
hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong, CRReds.AppCong.
|
||||||
|
- sauto lq:on.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma Pair_EPar_If n (r0 r1 : Tm n) q :
|
Lemma Pair_EPar_If n (r0 r1 : Tm n) q :
|
||||||
EPar.R (Pair r0 r1) q ->
|
EPar.R (Pair r0 r1) q ->
|
||||||
exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\
|
exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\
|
||||||
|
@ -2190,10 +2255,16 @@ Proof.
|
||||||
exists e. split => //.
|
exists e. split => //.
|
||||||
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
|
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
|
||||||
+ move => a2 b2 c [*] {iha ihb ihc}. subst.
|
+ move => a2 b2 c [*] {iha ihb ihc}. subst.
|
||||||
admit.
|
move /BVal_EPar_If : ha.
|
||||||
|
move /(_ b1 c1) => [e [h0 h1]].
|
||||||
|
exists e. split => //.
|
||||||
|
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
|
||||||
+ (* Need the rule that if commutes with abs *)
|
+ (* Need the rule that if commutes with abs *)
|
||||||
move => a2 b2 c d [*]. subst.
|
move => a2 b2 c d {iha ihb ihc} [*]. subst.
|
||||||
admit.
|
move /App_EPar_If : ha => [r0 [r1 [h0 [h1 h2]]]].
|
||||||
|
move /(_ b1 c1) : h2 => [e [h3 h4]].
|
||||||
|
exists e. split => //.
|
||||||
|
hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge.
|
||||||
+ move => p a2 b2 c [*]. subst.
|
+ move => p a2 b2 c [*]. subst.
|
||||||
move {iha ihb ihc}.
|
move {iha ihb ihc}.
|
||||||
move /Proj_EPar_If : ha => [d [h0 /(_ b1 c1) [e [h1 h2]]]].
|
move /Proj_EPar_If : ha => [d [h0 /(_ b1 c1) [e [h1 h2]]]].
|
||||||
|
@ -2211,10 +2282,10 @@ Proof.
|
||||||
move /ihc => {ihc} [c [? ?]].
|
move /ihc => {ihc} [c [? ?]].
|
||||||
exists (If a1 b1 c).
|
exists (If a1 b1 c).
|
||||||
hauto lq:on ctrs:rtc,EPar.R use:CRReds.IfCong.
|
hauto lq:on ctrs:rtc,EPar.R use:CRReds.IfCong.
|
||||||
Admitted.
|
Qed.
|
||||||
|
|
||||||
Lemma commutativity1 n (a b0 b1 : Tm n) :
|
Lemma commutativity1 n (a b0 b1 : Tm n) :
|
||||||
EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
|
EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ EPar.R b1 c.
|
||||||
Proof.
|
Proof.
|
||||||
move => + h. move : b0.
|
move => + h. move : b0.
|
||||||
elim : a b1 / h.
|
elim : a b1 / h.
|
||||||
|
@ -2223,7 +2294,7 @@ Proof.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma commutativity n (a b0 b1 : Tm n) :
|
Lemma commutativity n (a b0 b1 : Tm n) :
|
||||||
rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c.
|
rtc EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ rtc EPar.R b1 c.
|
||||||
move => h. move : b1. elim : a b0 /h.
|
move => h. move : b1. elim : a b0 /h.
|
||||||
- sfirstorder.
|
- sfirstorder.
|
||||||
- move => a0 a1 a2 + ha1 ih b1 +.
|
- move => a0 a1 a2 + ha1 ih b1 +.
|
||||||
|
@ -2392,55 +2463,49 @@ Proof.
|
||||||
- admit.
|
- admit.
|
||||||
Admitted.
|
Admitted.
|
||||||
|
|
||||||
Function tstar' {n} (a : Tm n) :=
|
(* Function tstar' {n} (a : Tm n) := *)
|
||||||
match a with
|
(* match a with *)
|
||||||
| VarTm i => a
|
(* | VarTm i => a *)
|
||||||
| Abs a => Abs (tstar' a)
|
(* | Abs a => Abs (tstar' a) *)
|
||||||
| App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a)
|
(* | App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) *)
|
||||||
| App a b => App (tstar' a) (tstar' b)
|
(* | App a b => App (tstar' a) (tstar' b) *)
|
||||||
| Pair a b => Pair (tstar' a) (tstar' b)
|
(* | Pair a b => Pair (tstar' a) (tstar' b) *)
|
||||||
| Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b)
|
(* | Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) *)
|
||||||
| Proj p a => Proj p (tstar' a)
|
(* | Proj p a => Proj p (tstar' a) *)
|
||||||
| TBind p a b => TBind p (tstar' a) (tstar' b)
|
(* | TBind p a b => TBind p (tstar' a) (tstar' b) *)
|
||||||
| Bot => Bot
|
(* | Bot => Bot *)
|
||||||
| Univ i => Univ i
|
(* | Univ i => Univ i *)
|
||||||
end.
|
(* end. *)
|
||||||
|
|
||||||
Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a).
|
(* Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). *)
|
||||||
Proof.
|
(* Proof. *)
|
||||||
apply tstar'_ind => {n a}.
|
(* apply tstar'_ind => {n a}. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R.
|
(* - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. *)
|
||||||
- hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R.
|
(* - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. *)
|
||||||
- hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'.
|
(* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *)
|
||||||
- hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'.
|
(* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
- hauto lq:on inv:RPar'.R ctrs:RPar'.R.
|
(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *)
|
||||||
Qed.
|
(* Qed. *)
|
||||||
|
|
||||||
Lemma RPar_diamond n (c a1 b1 : Tm n) :
|
(* Lemma RPar'_diamond n (c a1 b1 : Tm n) : *)
|
||||||
RPar.R c a1 ->
|
(* RPar'.R c a1 -> *)
|
||||||
RPar.R c b1 ->
|
(* RPar'.R c b1 -> *)
|
||||||
exists d2, RPar.R a1 d2 /\ RPar.R b1 d2.
|
(* exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. *)
|
||||||
Proof. hauto l:on use:RPar_triangle. Qed.
|
(* Proof. hauto l:on use:RPar'_triangle. Qed. *)
|
||||||
|
|
||||||
Lemma RPar'_diamond n (c a1 b1 : Tm n) :
|
(* Lemma RPar_confluent n (c a1 b1 : Tm n) : *)
|
||||||
RPar'.R c a1 ->
|
(* rtc RPar.R c a1 -> *)
|
||||||
RPar'.R c b1 ->
|
(* rtc RPar.R c b1 -> *)
|
||||||
exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2.
|
(* exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. *)
|
||||||
Proof. hauto l:on use:RPar'_triangle. Qed.
|
(* Proof. *)
|
||||||
|
(* sfirstorder use:relations.diamond_confluent, RPar_diamond. *)
|
||||||
Lemma RPar_confluent n (c a1 b1 : Tm n) :
|
(* Qed. *)
|
||||||
rtc RPar.R c a1 ->
|
|
||||||
rtc RPar.R c b1 ->
|
|
||||||
exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2.
|
|
||||||
Proof.
|
|
||||||
sfirstorder use:relations.diamond_confluent, RPar_diamond.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma EPar_confluent n (c a1 b1 : Tm n) :
|
Lemma EPar_confluent n (c a1 b1 : Tm n) :
|
||||||
rtc EPar.R c a1 ->
|
rtc EPar.R c a1 ->
|
||||||
|
|
Loading…
Add table
Reference in a new issue