From 4d40dcf8d4521de171b5e5a01c31b2c70786143e Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sun, 12 Jan 2025 23:38:15 -0500 Subject: [PATCH] Finish proving commutativity --- theories/fp_red.v | 169 ++++++++++++++++++++++++++++++++-------------- 1 file changed, 117 insertions(+), 52 deletions(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index d87a9b3..6981c43 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1936,6 +1936,34 @@ Proof. apply rtc_once. apply : CRRed.ProjAbs. Qed. +Lemma BVal_EPar_If n (v : bool) q : + EPar.R (BVal v : Tm n) q -> + forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (if v then b else c) e. +Proof. + move E :(BVal v) => u h. move : v E. + elim : n u q /h => //=. + - move => n a0 a1 ha iha v ? b c. subst. + spec_refl. + move /(_ b c) : iha => [e [h0 h1]]. + eexists. split; cycle 1. + apply : rtc_r; eauto. apply OExp.AppEta. + apply : rtc_l. apply CRRed.IfAbs. + apply CRReds.AbsCong. + apply : rtc_l. apply CRRed.IfApp. + apply CRReds.AppCong; auto using rtc_refl. + set (x := If _ _ _). + change x with (ren_Tm shift (If a1 b c)). + eauto using CRReds.renaming. + - move => n a0 a1 ha iha v ? b c. subst. + spec_refl. + move /(_ b c) : iha => [e [h0 h1]]. + eexists; split; cycle 1. + apply : rtc_r; eauto. apply OExp.PairEta. + apply : rtc_l. apply CRRed.IfPair. + apply CRReds.PairCong; hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong. + - sauto lq:on. +Qed. + Lemma Proj_EPar_If n p (a : Tm n) q : EPar.R (Proj p a) q -> exists d, EPar.R a d /\ @@ -1974,6 +2002,43 @@ Proof. - sauto lq:on rew:off. Qed. +Lemma App_EPar_If n (r0 r1 : Tm n) q : + EPar.R (App r0 r1) q -> + exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\ + forall b c, exists e, rtc CRRed.R (If q b c) e /\ rtc OExp.R (App (If d0 b c) d1) e. +Proof. + move E : (App r0 r1) => u h. + move : r0 r1 E. + elim : n u q /h => //= n. + - move => a0 a1 ha iha r0 r1 ?. subst. + spec_refl. + move : iha => [d0 [d1 [ih0 [ih1 ih2]]]]. + exists d0, d1. repeat split => //. + move => b c. + move /(_ b c) : ih2 => [e [h0 h1]]. + eexists; split; cycle 1. + apply : rtc_r; eauto. + apply OExp.AppEta. + apply : rtc_l. apply CRRed.IfAbs. + apply CRReds.AbsCong. + apply : rtc_l. apply CRRed.IfApp. + apply CRReds.AppCong; auto using rtc_refl. + set (x := If _ _ _). + change x with (ren_Tm shift (If a1 b c)). + auto using CRReds.renaming. + - move => a0 a1 ha iha r0 r1 ?. subst. + spec_refl. move : iha => [d0 [d1 [ih0 [ih1 ih2]]]]. + exists d0, d1. (repeat split) => // b c. + move /(_ b c) : ih2 => [d [h0 h1]]. + eexists; split; cycle 1. + apply : rtc_r; eauto. + apply OExp.PairEta. + apply : rtc_l. apply CRRed.IfPair. + apply CRReds.PairCong; + hauto lq:on ctrs:rtc use:CRRed.IfProj, CRReds.ProjCong, CRReds.AppCong. + - sauto lq:on. +Qed. + Lemma Pair_EPar_If n (r0 r1 : Tm n) q : EPar.R (Pair r0 r1) q -> exists d0 d1, EPar.R r0 d0 /\ EPar.R r1 d1 /\ @@ -2190,10 +2255,16 @@ Proof. exists e. split => //. hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge. + move => a2 b2 c [*] {iha ihb ihc}. subst. - admit. + move /BVal_EPar_If : ha. + move /(_ b1 c1) => [e [h0 h1]]. + exists e. split => //. + hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge. + (* Need the rule that if commutes with abs *) - move => a2 b2 c d [*]. subst. - admit. + move => a2 b2 c d {iha ihb ihc} [*]. subst. + move /App_EPar_If : ha => [r0 [r1 [h0 [h1 h2]]]]. + move /(_ b1 c1) : h2 => [e [h3 h4]]. + exists e. split => //. + hauto lq:on ctrs:EPar.R use:EPar.renaming, OExp.merge. + move => p a2 b2 c [*]. subst. move {iha ihb ihc}. move /Proj_EPar_If : ha => [d [h0 /(_ b1 c1) [e [h1 h2]]]]. @@ -2211,10 +2282,10 @@ Proof. move /ihc => {ihc} [c [? ?]]. exists (If a1 b1 c). hauto lq:on ctrs:rtc,EPar.R use:CRReds.IfCong. -Admitted. +Qed. Lemma commutativity1 n (a b0 b1 : Tm n) : - EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. + EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ EPar.R b1 c. Proof. move => + h. move : b0. elim : a b1 / h. @@ -2223,7 +2294,7 @@ Proof. Qed. Lemma commutativity n (a b0 b1 : Tm n) : - rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. + rtc EPar.R a b0 -> rtc CRRed.R a b1 -> exists c, rtc CRRed.R b0 c /\ rtc EPar.R b1 c. move => h. move : b1. elim : a b0 /h. - sfirstorder. - move => a0 a1 a2 + ha1 ih b1 +. @@ -2392,55 +2463,49 @@ Proof. - admit. Admitted. -Function tstar' {n} (a : Tm n) := - match a with - | VarTm i => a - | Abs a => Abs (tstar' a) - | App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) - | App a b => App (tstar' a) (tstar' b) - | Pair a b => Pair (tstar' a) (tstar' b) - | Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) - | Proj p a => Proj p (tstar' a) - | TBind p a b => TBind p (tstar' a) (tstar' b) - | Bot => Bot - | Univ i => Univ i - end. +(* Function tstar' {n} (a : Tm n) := *) +(* match a with *) +(* | VarTm i => a *) +(* | Abs a => Abs (tstar' a) *) +(* | App (Abs a) b => subst_Tm (scons (tstar' b) VarTm) (tstar' a) *) +(* | App a b => App (tstar' a) (tstar' b) *) +(* | Pair a b => Pair (tstar' a) (tstar' b) *) +(* | Proj p (Pair a b) => if p is PL then (tstar' a) else (tstar' b) *) +(* | Proj p a => Proj p (tstar' a) *) +(* | TBind p a b => TBind p (tstar' a) (tstar' b) *) +(* | Bot => Bot *) +(* | Univ i => Univ i *) +(* end. *) -Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). -Proof. - apply tstar'_ind => {n a}. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. - - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. - - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. - - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - - hauto lq:on inv:RPar'.R ctrs:RPar'.R. -Qed. +(* Lemma RPar'_triangle n (a : Tm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). *) +(* Proof. *) +(* apply tstar'_ind => {n a}. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. *) +(* - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. *) +(* - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *) +(* - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* - hauto lq:on inv:RPar'.R ctrs:RPar'.R. *) +(* Qed. *) -Lemma RPar_diamond n (c a1 b1 : Tm n) : - RPar.R c a1 -> - RPar.R c b1 -> - exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. -Proof. hauto l:on use:RPar_triangle. Qed. +(* Lemma RPar'_diamond n (c a1 b1 : Tm n) : *) +(* RPar'.R c a1 -> *) +(* RPar'.R c b1 -> *) +(* exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. *) +(* Proof. hauto l:on use:RPar'_triangle. Qed. *) -Lemma RPar'_diamond n (c a1 b1 : Tm n) : - RPar'.R c a1 -> - RPar'.R c b1 -> - exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. -Proof. hauto l:on use:RPar'_triangle. Qed. - -Lemma RPar_confluent n (c a1 b1 : Tm n) : - rtc RPar.R c a1 -> - rtc RPar.R c b1 -> - exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. -Proof. - sfirstorder use:relations.diamond_confluent, RPar_diamond. -Qed. +(* Lemma RPar_confluent n (c a1 b1 : Tm n) : *) +(* rtc RPar.R c a1 -> *) +(* rtc RPar.R c b1 -> *) +(* exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. *) +(* Proof. *) +(* sfirstorder use:relations.diamond_confluent, RPar_diamond. *) +(* Qed. *) Lemma EPar_confluent n (c a1 b1 : Tm n) : rtc EPar.R c a1 ->