Finish structural rules

This commit is contained in:
Yiyun Liu 2024-12-30 22:07:35 -05:00
parent 5347d573b5
commit 2f68e6c87c

View file

@ -451,3 +451,45 @@ Proof.
have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming.
hauto q:on solve+:(by asimpl).
Qed.
Lemma weakening_Sem n Γ (a : Tm n) A B i
(h0 : Γ B Univ i)
(h1 : Γ a A) :
funcomp (ren_Tm shift) (scons B Γ) ren_Tm shift a ren_Tm shift A.
Proof.
apply : renaming_SemWt; eauto.
hauto lq:on inv:option unfold:renaming_ok.
Qed.
Lemma SemWt_Univ n Γ (A : Tm n) i :
Γ A Univ i <->
forall ρ, ρ_ok Γ ρ -> exists S, subst_Tm ρ A i S.
Proof.
rewrite /SemWt.
split.
- hauto lq:on rew:off use:InterpUniv_Univ_inv.
- move => /[swap] ρ /[apply].
move => [PA hPA].
exists (S i). eexists.
split.
+ simp InterpUniv. apply InterpExt_Univ. lia.
+ simpl. eauto.
Qed.
(* Structural laws for Semantic context wellformedness *)
Lemma SemWff_nil : SemWff null.
Proof. case. Qed.
Lemma SemWff_cons n Γ (A : Tm n) i :
Γ ->
Γ A Univ i ->
(* -------------- *)
funcomp (ren_Tm shift) (scons A Γ).
Proof.
move => h h0.
move => j. destruct j as [j|].
- move /(_ j) : h => [k hk].
exists k. change (Univ k) with (ren_Tm shift (Univ k : Tm n)).
eauto using weakening_Sem.
- hauto q:on use:weakening_Sem.
Qed.