diff --git a/theories/logrel.v b/theories/logrel.v index 2790e67..d7112ce 100644 --- a/theories/logrel.v +++ b/theories/logrel.v @@ -451,3 +451,45 @@ Proof. have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming. hauto q:on solve+:(by asimpl). Qed. + +Lemma weakening_Sem n Γ (a : Tm n) A B i + (h0 : Γ ⊨ B ∈ Univ i) + (h1 : Γ ⊨ a ∈ A) : + funcomp (ren_Tm shift) (scons B Γ) ⊨ ren_Tm shift a ∈ ren_Tm shift A. +Proof. + apply : renaming_SemWt; eauto. + hauto lq:on inv:option unfold:renaming_ok. +Qed. + +Lemma SemWt_Univ n Γ (A : Tm n) i : + Γ ⊨ A ∈ Univ i <-> + forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_Tm ρ A ⟧ i ↘ S. +Proof. + rewrite /SemWt. + split. + - hauto lq:on rew:off use:InterpUniv_Univ_inv. + - move => /[swap] ρ /[apply]. + move => [PA hPA]. + exists (S i). eexists. + split. + + simp InterpUniv. apply InterpExt_Univ. lia. + + simpl. eauto. +Qed. + +(* Structural laws for Semantic context wellformedness *) +Lemma SemWff_nil : SemWff null. +Proof. case. Qed. + +Lemma SemWff_cons n Γ (A : Tm n) i : + ⊨ Γ -> + Γ ⊨ A ∈ Univ i -> + (* -------------- *) + ⊨ funcomp (ren_Tm shift) (scons A Γ). +Proof. + move => h h0. + move => j. destruct j as [j|]. + - move /(_ j) : h => [k hk]. + exists k. change (Univ k) with (ren_Tm shift (Univ k : Tm n)). + eauto using weakening_Sem. + - hauto q:on use:weakening_Sem. +Qed.