Prove one Pair EPar case

This commit is contained in:
Yiyun Liu 2024-12-22 12:40:20 -05:00
parent ecee278d04
commit 086e68f43e

View file

@ -371,7 +371,29 @@ Lemma Pair_EPar n (a b c : Tm n) :
(Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\ (Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\
EPar.R a d0 /\ EPar.R b d1). EPar.R a d0 /\ EPar.R b d1).
Proof. Proof.
Admitted. move E : (Pair a b) => u h. move : a b E.
elim : n u c /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]].
split.
+ move => p.
exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))).
split.
* apply : relations.rtc_transitive.
** apply RPars.ProjCong. apply RPars.AbsCong. eassumption.
** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong.
apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl.
hauto l:on.
* hauto lq:on use:EPar.AppEta'.
+ exists d0, d1.
repeat split => //.
apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=.
by asimpl; renamify.
- move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl).
split => [p|].
+ move : iha => [/(_ p) [d [ih0 ih1]] _].
Lemma commutativity n (a b0 b1 : Tm n) : Lemma commutativity n (a b0 b1 : Tm n) :