From 086e68f43e7570e925530b5340ac338c23f7718b Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sun, 22 Dec 2024 12:40:20 -0500 Subject: [PATCH] Prove one Pair EPar case --- theories/fp_red.v | 24 +++++++++++++++++++++++- 1 file changed, 23 insertions(+), 1 deletion(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 898b7e8..4ee8bdb 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -371,7 +371,29 @@ Lemma Pair_EPar n (a b c : Tm n) : (Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\ EPar.R a d0 /\ EPar.R b d1). Proof. -Admitted. + move E : (Pair a b) => u h. move : a b E. + elim : n u c /h => //=. + - move => n a0 a1 ha iha a b ?. subst. + specialize iha with (1 := eq_refl). + move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. + split. + + move => p. + exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))). + split. + * apply : relations.rtc_transitive. + ** apply RPars.ProjCong. apply RPars.AbsCong. eassumption. + ** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong. + apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. + hauto l:on. + * hauto lq:on use:EPar.AppEta'. + + exists d0, d1. + repeat split => //. + apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=. + by asimpl; renamify. + - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). + split => [p|]. + + move : iha => [/(_ p) [d [ih0 ih1]] _]. + Lemma commutativity n (a b0 b1 : Tm n) :