pair-eta/theories/fp_red.v

1020 lines
31 KiB
Coq
Raw Normal View History

2024-12-13 11:09:00 -05:00
Require Import ssreflect.
2024-12-24 00:37:42 -05:00
Require Import FunInd.
2024-12-24 22:57:28 -05:00
Require Import Arith.Wf_nat.
Require Import Psatz.
2024-12-23 23:44:57 -05:00
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
2024-12-13 11:09:00 -05:00
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
2024-12-24 15:31:50 -05:00
From Equations Require Import Equations.
2024-12-13 11:09:00 -05:00
2024-12-16 21:41:29 -05:00
2024-12-13 11:09:00 -05:00
(* Trying my best to not write C style module_funcname *)
Module Par.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| ProjAbs p a0 a1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
| ProjPair p a0 a1 b0 b1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
2024-12-13 11:09:00 -05:00
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
2024-12-16 18:00:08 -05:00
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
2024-12-13 11:09:00 -05:00
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj PL a1) (Proj PR a1))
2024-12-13 11:09:00 -05:00
(*************** Congruence ********************)
2024-12-16 19:56:27 -05:00
| Var i : R (VarTm i) (VarTm i)
2024-12-16 18:00:08 -05:00
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
2024-12-13 11:09:00 -05:00
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
2024-12-16 18:00:08 -05:00
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
2024-12-24 01:09:02 -05:00
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
2024-12-24 15:31:50 -05:00
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
2024-12-25 00:16:26 -05:00
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : match goal with
| [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl
| _ => qauto ctrs:R use:ProjPair'
end.
Qed.
2024-12-13 11:09:00 -05:00
End Par.
2024-12-25 00:16:26 -05:00
Module Pars.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
rtc Par.R a b -> rtc Par.R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
induction 1; hauto lq:on ctrs:rtc use:Par.renaming.
Qed.
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc Par.R a b ->
rtc Par.R (subst_Tm ρ a) (subst_Tm ρ b).
Admitted.
End Pars.
2024-12-13 11:09:00 -05:00
(***************** Beta rules only ***********************)
Module RPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(***************** Beta ***********************)
| AppAbs a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) (subst_Tm (scons b1 VarTm) a1)
| AppPair a0 a1 b0 b1 c0 c1:
R a0 a1 ->
R b0 b1 ->
R c0 c1 ->
R (App (Pair a0 b0) c0) (Pair (App a1 c1) (App b1 c1))
| ProjAbs p a0 a1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
R (Proj p (Abs a0)) (Abs (Proj p a1))
| ProjPair p a0 a1 b0 b1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) (if p is PL then a1 else b1)
2024-12-13 11:09:00 -05:00
(*************** Congruence ********************)
2024-12-16 19:56:27 -05:00
| Var i : R (VarTm i) (VarTm i)
2024-12-16 18:00:08 -05:00
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
2024-12-13 11:09:00 -05:00
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
2024-12-16 18:00:08 -05:00
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
2024-12-24 01:09:02 -05:00
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
2024-12-24 15:31:50 -05:00
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
2024-12-16 19:56:27 -05:00
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
Lemma refl n (a : Tm n) : R a a.
Proof.
induction a; hauto lq:on ctrs:R.
Qed.
Lemma AppAbs' n a0 a1 (b0 b1 t : Tm n) :
t = subst_Tm (scons b1 VarTm) a1 ->
R a0 a1 ->
R b0 b1 ->
R (App (Abs a0) b0) t.
Proof. move => ->. apply AppAbs. Qed.
Lemma ProjPair' n p (a0 a1 b0 b1 : Tm n) t :
t = (if p is PL then a1 else b1) ->
R a0 a1 ->
R b0 b1 ->
R (Proj p (Pair a0 b0)) t.
Proof. move => > ->. apply ProjPair. Qed.
2024-12-16 19:56:27 -05:00
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => *; apply : AppAbs'; eauto; by asimpl.
all : qauto ctrs:R use:ProjPair'.
2024-12-16 19:56:27 -05:00
Qed.
2024-12-21 22:36:14 -05:00
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> Tm m) (ξ : fin m -> fin p) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((funcomp (ren_Tm ξ) ρ0) i) ((funcomp (ren_Tm ξ) ρ1) i)).
Proof. eauto using renaming. Qed.
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> Tm m) a b :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> Tm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R (up_Tm_Tm ρ0 i) (up_Tm_Tm ρ1 i)).
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_Tm_Tm. Qed.
2024-12-21 00:57:00 -05:00
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
2024-12-21 22:36:14 -05:00
(forall i, R (ρ0 i) (ρ1 i)) ->
2024-12-21 00:57:00 -05:00
R a b -> R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
2024-12-21 22:36:14 -05:00
move => + h. move : m ρ0 ρ1.
2024-12-21 00:57:00 -05:00
elim : n a b /h.
2024-12-21 22:36:14 -05:00
- move => *.
apply : AppAbs'; eauto using morphing_up.
by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:ProjPair' use:morphing_up.
2024-12-21 22:36:14 -05:00
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R use:morphing_up.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
2024-12-24 01:09:02 -05:00
- hauto lq:on ctrs:R use:morphing_up.
2024-12-24 15:31:50 -05:00
- hauto lq:on ctrs:R.
2024-12-21 22:36:14 -05:00
Qed.
2024-12-21 00:57:00 -05:00
2024-12-21 22:36:14 -05:00
Lemma substing n m (a b : Tm n) (ρ : fin n -> Tm m) :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. hauto l:on use:morphing, refl. Qed.
2024-12-24 00:37:42 -05:00
Lemma cong n (a b : Tm (S n)) c d :
R a b ->
R c d ->
R (subst_Tm (scons c VarTm) a) (subst_Tm (scons d VarTm) b).
Proof.
move => h0 h1. apply morphing => //=.
qauto l:on ctrs:R inv:option.
Qed.
2024-12-13 11:09:00 -05:00
End RPar.
Module EPar.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a0 a1 :
R a0 a1 ->
2024-12-16 18:00:08 -05:00
R a0 (Abs (App (ren_Tm shift a1) (VarTm var_zero)))
2024-12-13 11:09:00 -05:00
| PairEta a0 a1 :
R a0 a1 ->
R a0 (Pair (Proj PL a1) (Proj PR a1))
2024-12-13 11:09:00 -05:00
(*************** Congruence ********************)
2024-12-16 19:56:27 -05:00
| Var i : R (VarTm i) (VarTm i)
2024-12-16 18:00:08 -05:00
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
2024-12-13 11:09:00 -05:00
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (App a0 b0) (App a1 b1)
2024-12-16 18:00:08 -05:00
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (Pair a0 b0) (Pair a1 b1)
| ProjCong p a0 a1 :
2024-12-13 11:09:00 -05:00
R a0 a1 ->
2024-12-24 01:09:02 -05:00
R (Proj p a0) (Proj p a1)
| PiCong A0 A1 B0 B1:
R A0 A1 ->
R B0 B1 ->
2024-12-24 15:31:50 -05:00
R (Pi A0 B0) (Pi A1 B1)
| BotCong :
R Bot Bot.
2024-12-16 19:56:27 -05:00
Lemma refl n (a : Tm n) : EPar.R a a.
Proof.
induction a; hauto lq:on ctrs:EPar.R.
Qed.
Lemma renaming n m (a b : Tm n) (ξ : fin n -> fin m) :
R a b -> R (ren_Tm ξ a) (ren_Tm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => n a0 a1 ha iha m ξ /=.
move /(_ _ ξ) /AppEta : iha.
by asimpl.
all : qauto ctrs:R.
Qed.
2024-12-16 21:41:29 -05:00
Derive Dependent Inversion inv with (forall n (a b : Tm n), R a b) Sort Prop.
2024-12-21 00:57:00 -05:00
Lemma AppEta' n (a0 a1 b : Tm n) :
b = (Abs (App (ren_Tm shift a1) (VarTm var_zero))) ->
R a0 a1 ->
R a0 b.
Proof. move => ->; apply AppEta. Qed.
Lemma morphing n m (a b : Tm n) (ρ0 ρ1 : fin n -> Tm m) :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => h. move : m ρ0 ρ1. elim : n a b / h => n.
- move => a0 a1 ha iha m ρ0 ρ1 hρ /=.
apply : AppEta'; eauto. by asimpl.
- hauto lq:on ctrs:R.
- hauto lq:on ctrs:R.
- hauto l:on ctrs:R use:renaming inv:option.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
- hauto q:on ctrs:R.
2024-12-24 01:09:02 -05:00
- hauto l:on ctrs:R use:renaming inv:option.
2024-12-24 15:31:50 -05:00
- hauto lq:on ctrs:R.
2024-12-21 00:57:00 -05:00
Qed.
Lemma substing n a0 a1 (b0 b1 : Tm n) :
R a0 a1 ->
R b0 b1 ->
R (subst_Tm (scons b0 VarTm) a0) (subst_Tm (scons b1 VarTm) a1).
Proof.
move => h0 h1. apply morphing => //.
hauto lq:on ctrs:R inv:option.
Qed.
2024-12-13 11:09:00 -05:00
End EPar.
2024-12-16 19:56:27 -05:00
Module OExp.
Inductive R {n} : Tm n -> Tm n -> Prop :=
(****************** Eta ***********************)
| AppEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero)))
| PairEta a :
R a (Pair (Proj PL a) (Proj PR a)).
Lemma merge n (t a b : Tm n) :
rtc R a b ->
EPar.R t a ->
EPar.R t b.
Proof.
move => h. move : t. elim : a b /h.
- eauto using EPar.refl.
- hauto q:on ctrs:EPar.R inv:R.
Qed.
Lemma commutativity n (a b c : Tm n) :
EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d.
Proof.
move => h.
inversion 1; subst.
- hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl.
- hauto lq:on ctrs:EPar.R, R.
Qed.
Lemma commutativity0 n (a b c : Tm n) :
EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d.
Proof.
move => + h. move : b.
elim : a c / h.
- sfirstorder.
- hauto lq:on rew:off ctrs:rtc use:commutativity.
Qed.
End OExp.
2024-12-16 19:56:27 -05:00
Local Ltac com_helper :=
split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming
|hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming].
2024-12-20 22:56:08 -05:00
Module RPars.
2024-12-16 21:41:29 -05:00
2024-12-20 23:58:44 -05:00
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:RPar.R use:RPar.refl.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
2024-12-20 22:56:08 -05:00
Lemma AbsCong n (a b : Tm (S n)) :
rtc RPar.R a b ->
rtc RPar.R (Abs a) (Abs b).
2024-12-20 23:58:44 -05:00
Proof. solve_s. Qed.
2024-12-16 21:41:29 -05:00
2024-12-21 00:57:00 -05:00
Lemma AppCong n (a0 a1 b0 b1 : Tm n) :
2024-12-20 22:56:08 -05:00
rtc RPar.R a0 a1 ->
2024-12-21 00:57:00 -05:00
rtc RPar.R b0 b1 ->
rtc RPar.R (App a0 b0) (App a1 b1).
2024-12-20 23:58:44 -05:00
Proof. solve_s. Qed.
2024-12-16 21:41:29 -05:00
2024-12-24 01:09:02 -05:00
Lemma PiCong n (a0 a1 : Tm n) b0 b1 :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pi a0 b0) (Pi a1 b1).
Proof. solve_s. Qed.
2024-12-20 22:56:08 -05:00
Lemma PairCong n (a0 a1 b0 b1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R b0 b1 ->
rtc RPar.R (Pair a0 b0) (Pair a1 b1).
2024-12-20 23:58:44 -05:00
Proof. solve_s. Qed.
2024-12-16 21:41:29 -05:00
Lemma ProjCong n p (a0 a1 : Tm n) :
2024-12-20 23:58:44 -05:00
rtc RPar.R a0 a1 ->
rtc RPar.R (Proj p a0) (Proj p a1).
2024-12-20 23:58:44 -05:00
Proof. solve_s. Qed.
2024-12-16 21:41:29 -05:00
2024-12-20 22:56:08 -05:00
Lemma renaming n (a0 a1 : Tm n) m (ξ : fin n -> fin m) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm ξ a0) (ren_Tm ξ a1).
Proof.
induction 1.
- apply rtc_refl.
- eauto using RPar.renaming, rtc_l.
Qed.
2024-12-20 23:58:44 -05:00
Lemma weakening n (a0 a1 : Tm n) :
rtc RPar.R a0 a1 ->
rtc RPar.R (ren_Tm shift a0) (ren_Tm shift a1).
Proof. apply renaming. Qed.
2024-12-20 22:56:08 -05:00
Lemma Abs_inv n (a : Tm (S n)) b :
rtc RPar.R (Abs a) b -> exists a', b = Abs a' /\ rtc RPar.R a a'.
Proof.
move E : (Abs a) => b0 h. move : a E.
elim : b0 b / h.
- hauto lq:on ctrs:rtc.
- hauto lq:on ctrs:rtc inv:RPar.R, rtc.
Qed.
2024-12-20 23:58:44 -05:00
2024-12-21 22:36:14 -05:00
Lemma morphing n m (a b : Tm n) (ρ : fin n -> Tm m) :
rtc RPar.R a b ->
rtc RPar.R (subst_Tm ρ a) (subst_Tm ρ b).
Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed.
Lemma substing n (a b : Tm (S n)) c :
rtc RPar.R a b ->
rtc RPar.R (subst_Tm (scons c VarTm) a) (subst_Tm (scons c VarTm) b).
Proof. hauto lq:on use:morphing inv:option. Qed.
2024-12-20 22:56:08 -05:00
End RPars.
2024-12-17 00:41:32 -05:00
2024-12-17 01:55:28 -05:00
Lemma Abs_EPar n a (b : Tm n) :
EPar.R (Abs a) b ->
2024-12-20 22:56:08 -05:00
(exists d, EPar.R a d /\
rtc RPar.R (App (ren_Tm shift b) (VarTm var_zero)) d) /\
2024-12-20 16:19:35 -05:00
(exists d,
EPar.R a d /\ forall p,
rtc RPar.R (Proj p b) (Abs (Proj p d))).
2024-12-17 01:55:28 -05:00
Proof.
2024-12-20 22:56:08 -05:00
move E : (Abs a) => u h.
move : a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [[d [ih0 ih1]] _].
split; exists d.
+ split => //.
apply : rtc_l.
apply RPar.AppAbs; eauto => //=.
apply RPar.refl.
by apply RPar.refl.
move :ih1; substify; by asimpl.
+ split => // p.
apply : rtc_l.
apply : RPar.ProjAbs.
by apply RPar.refl.
eauto using RPars.ProjCong, RPars.AbsCong.
2024-12-20 23:58:44 -05:00
- move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl).
move : iha => [_ [d [ih0 ih1]]].
2024-12-20 23:58:44 -05:00
split.
+ exists (Pair (Proj PL d) (Proj PR d)).
split; first by apply EPar.PairEta.
2024-12-20 23:58:44 -05:00
apply : rtc_l.
apply RPar.AppPair; eauto using RPar.refl.
suff h : forall p, rtc RPar.R (App (Proj p (ren_Tm shift a1)) (VarTm var_zero)) (Proj p d) by
sfirstorder use:RPars.PairCong.
move => p. move /(_ p) /RPars.weakening in ih1.
apply relations.rtc_transitive with (y := App (ren_Tm shift (Abs (Proj p d))) (VarTm var_zero)).
by eauto using RPars.AppCong, rtc_refl.
apply relations.rtc_once => /=.
apply : RPar.AppAbs'; eauto using RPar.refl.
by asimpl.
+ exists d. repeat split => //. move => p.
apply : rtc_l; eauto.
hauto q:on use:RPar.ProjPair', RPar.refl.
2024-12-20 23:58:44 -05:00
- move => n a0 a1 ha _ ? [*]. subst.
split.
+ exists a1. split => //.
apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl.
+ exists a1. split => // p.
apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl.
2024-12-20 23:58:44 -05:00
Qed.
2024-12-17 01:55:28 -05:00
2024-12-22 12:12:25 -05:00
Lemma Pair_EPar n (a b c : Tm n) :
EPar.R (Pair a b) c ->
(forall p, exists d, rtc RPar.R (Proj p c) d /\ EPar.R (if p is PL then a else b) d) /\
(exists d0 d1, rtc RPar.R (App (ren_Tm shift c) (VarTm var_zero))
(Pair (App (ren_Tm shift d0) (VarTm var_zero))(App (ren_Tm shift d1) (VarTm var_zero))) /\
EPar.R a d0 /\ EPar.R b d1).
Proof.
2024-12-22 12:40:20 -05:00
move E : (Pair a b) => u h. move : a b E.
elim : n u c /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]].
split.
+ move => p.
exists (Abs (App (ren_Tm shift (if p is PL then d0 else d1)) (VarTm var_zero))).
split.
* apply : relations.rtc_transitive.
** apply RPars.ProjCong. apply RPars.AbsCong. eassumption.
** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong.
apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl.
hauto l:on.
* hauto lq:on use:EPar.AppEta'.
+ exists d0, d1.
repeat split => //.
apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=.
by asimpl; renamify.
- move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl).
split => [p|].
+ move : iha => [/(_ p) [d [ih0 ih1]] _].
2024-12-22 15:08:01 -05:00
exists d. split=>//.
apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl.
set q := (X in rtc RPar.R X d).
by have -> : q = Proj p a1 by hauto lq:on.
+ move :iha => [iha _].
move : (iha PL) => [d0 [ih0 ih0']].
move : (iha PR) => [d1 [ih1 ih1']] {iha}.
exists d0, d1.
apply RPars.weakening in ih0, ih1.
repeat split => //=.
apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl.
apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl.
- move => n a0 a1 b0 b1 ha _ hb _ a b [*]. subst.
split.
+ move => p.
exists (if p is PL then a1 else b1).
split.
* apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl.
* hauto lq:on rew:off.
+ exists a1, b1.
split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl.
split => //.
Qed.
2024-12-22 12:12:25 -05:00
2024-12-22 15:44:48 -05:00
Lemma commutativity0 n (a b0 b1 : Tm n) :
2024-12-17 00:41:32 -05:00
EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
2024-12-16 19:56:27 -05:00
Proof.
move => h. move : b1.
elim : n a b0 / h.
- move => n a b0 ha iha b1 hb.
move : iha (hb) => /[apply].
move => [c [ih0 ih1]].
2024-12-16 21:41:29 -05:00
exists (Abs (App (ren_Tm shift c) (VarTm var_zero))).
split.
2024-12-21 00:57:00 -05:00
+ hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming.
2024-12-16 21:41:29 -05:00
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
2024-12-16 19:56:27 -05:00
- move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0.
move => [c [ih0 ih1]].
exists (Pair (Proj PL c) (Proj PR c)). split.
+ apply RPars.PairCong;
by apply RPars.ProjCong.
2024-12-16 21:41:29 -05:00
+ hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming.
2024-12-17 00:41:32 -05:00
- hauto l:on ctrs:rtc inv:RPar.R.
- move => n a0 a1 h ih b1.
elim /RPar.inv => //= _.
move => a2 a3 ? [*]. subst.
2024-12-21 00:05:42 -05:00
hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong.
2024-12-16 19:56:27 -05:00
- move => n a0 a1 b0 b1 ha iha hb ihb b2.
2024-12-16 21:41:29 -05:00
elim /RPar.inv => //= _.
+ move => a2 a3 b3 b4 h0 h1 [*]. subst.
2024-12-21 00:57:00 -05:00
move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]].
2024-12-20 16:19:35 -05:00
have {}/iha : RPar.R (Abs a2) (Abs a3) by hauto lq:on ctrs:RPar.R.
2024-12-21 00:57:00 -05:00
move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]].
exists (subst_Tm (scons b VarTm) d).
split.
(* By substitution *)
2024-12-21 22:36:14 -05:00
* move /RPars.substing : ih2.
move /(_ b).
asimpl.
eauto using relations.rtc_transitive, RPars.AppCong.
2024-12-21 00:57:00 -05:00
(* By EPar morphing *)
* by apply EPar.substing.
2024-12-16 21:41:29 -05:00
+ move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst.
2024-12-22 15:22:41 -05:00
move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha
=> [c [ihc0 ihc1]].
move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]].
move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]].
move /RPars.substing : ih0. move /(_ d).
asimpl => h.
exists (Pair (App d0 d) (App d1 d)).
split.
hauto lq:on use:relations.rtc_transitive, RPars.AppCong.
apply EPar.PairCong; by apply EPar.AppCong.
2024-12-21 00:57:00 -05:00
+ hauto lq:on ctrs:EPar.R use:RPars.AppCong.
- hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong.
- move => n p a b0 h0 ih0 b1.
2024-12-16 21:41:29 -05:00
elim /RPar.inv => //= _.
+ move => ? a0 a1 h [*]. subst.
move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]].
move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]].
exists (Abs (Proj p d)).
qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive.
+ move => p0 a0 a1 b2 b3 h1 h2 [*]. subst.
move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]].
2024-12-22 15:22:41 -05:00
move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _].
exists d. split => //.
hauto lq:on use:RPars.ProjCong, relations.rtc_transitive.
+ hauto lq:on ctrs:EPar.R use:RPars.ProjCong.
2024-12-24 01:09:02 -05:00
- hauto lq:on inv:RPar.R ctrs:EPar.R, rtc use:RPars.PiCong.
2024-12-24 15:31:50 -05:00
- hauto l:on ctrs:EPar.R inv:RPar.R.
2024-12-22 15:22:41 -05:00
Qed.
2024-12-16 19:56:27 -05:00
2024-12-22 15:44:48 -05:00
Lemma commutativity1 n (a b0 b1 : Tm n) :
EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c.
Proof.
move => + h. move : b0.
elim : a b1 / h.
- sfirstorder.
- qauto l:on use:relations.rtc_transitive, commutativity0.
Qed.
Lemma commutativity n (a b0 b1 : Tm n) :
rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c.
move => h. move : b1. elim : a b0 /h.
- sfirstorder.
- move => a0 a1 a2 + ha1 ih b1 +.
move : commutativity1; repeat move/[apply].
hauto q:on ctrs:rtc.
Qed.
2024-12-23 23:44:57 -05:00
Lemma Abs_EPar' n a (b : Tm n) :
2024-12-22 23:51:01 -05:00
EPar.R (Abs a) b ->
2024-12-23 23:44:57 -05:00
(exists d, EPar.R a d /\
rtc OExp.R (Abs d) b).
2024-12-22 23:51:01 -05:00
Proof.
move E : (Abs a) => u h.
move : a E.
2024-12-23 23:44:57 -05:00
elim : n u b /h => //=.
- move => n a0 a1 ha iha a ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
2024-12-22 23:51:01 -05:00
Qed.
2024-12-24 00:12:42 -05:00
Lemma Proj_EPar' n p a (b : Tm n) :
EPar.R (Proj p a) b ->
(exists d, EPar.R a d /\
rtc OExp.R (Proj p d) b).
Proof.
move E : (Proj p a) => u h.
move : p a E.
elim : n u b /h => //=.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a p ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
Lemma App_EPar' n (a b u : Tm n) :
EPar.R (App a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (App a0 b0) u).
Proof.
move E : (App a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
2024-12-24 01:09:02 -05:00
Lemma Pi_EPar' n (a : Tm n) b u :
EPar.R (Pi a b) u ->
(exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pi a0 b0) u).
Proof.
move E : (Pi a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
2024-12-24 00:12:42 -05:00
Lemma Pair_EPar' n (a b u : Tm n) :
EPar.R (Pair a b) u ->
exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (Pair a0 b0) u.
Proof.
move E : (Pair a b) => t h.
move : a b E. elim : n t u /h => //=.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 ha iha a b ?. subst.
specialize iha with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
2024-12-24 15:31:50 -05:00
Lemma Bot_EPar' n (u : Tm n) :
EPar.R Bot u ->
rtc OExp.R Bot u.
move E : Bot => t h.
move : E. elim : n t u /h => //=.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- move => n a0 a1 h ih ?. subst.
specialize ih with (1 := eq_refl).
hauto lq:on ctrs:OExp.R use:rtc_r.
- hauto l:on ctrs:OExp.R.
Qed.
2024-12-22 16:06:36 -05:00
Lemma EPar_diamond n (c a1 b1 : Tm n) :
EPar.R c a1 ->
EPar.R c b1 ->
exists d2, EPar.R a1 d2 /\ EPar.R b1 d2.
Proof.
move => h. move : b1. elim : n c a1 / h.
- move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]].
exists(Abs (App (ren_Tm shift d2) (VarTm var_zero))).
hauto lq:on ctrs:EPar.R use:EPar.renaming.
- hauto lq:on rew:off ctrs:EPar.R.
- hauto lq:on use:EPar.refl.
2024-12-24 00:12:42 -05:00
- move => n a0 a1 ha iha a2.
move /Abs_EPar' => [d [hd0 hd1]].
move : iha hd0; repeat move/[apply].
2024-12-22 23:51:01 -05:00
move => [d2 [h0 h1]].
2024-12-23 23:44:57 -05:00
have : EPar.R (Abs d) (Abs d2) by eauto using EPar.AbsCong.
2024-12-24 00:12:42 -05:00
move : OExp.commutativity0 hd1; repeat move/[apply].
2024-12-23 23:44:57 -05:00
move => [d1 [hd1 hd2]].
2024-12-24 00:12:42 -05:00
exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (App a2 b2)(App a3 b3)
by hauto l:on use:EPar.AppCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pair a2 b2)(Pair a3 b3)
by hauto l:on use:EPar.PairCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
- move => n p a0 a1 ha iha b.
move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}.
have : EPar.R (Proj p d) (Proj p d2)
by hauto l:on use:EPar.ProjCong.
move : OExp.commutativity0 h1; repeat move/[apply].
move => [d1 h1].
exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
2024-12-24 01:09:02 -05:00
- move => n a0 a1 b0 b1 ha iha hb ihb c.
move /Pi_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}.
have : EPar.R (Pi a2 b2)(Pi a3 b3)
by hauto l:on use:EPar.PiCong.
move : OExp.commutativity0 h2; repeat move/[apply].
move => [d h].
exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge.
2024-12-24 15:31:50 -05:00
- qauto use:Bot_EPar', EPar.refl.
2024-12-24 00:12:42 -05:00
Qed.
2024-12-24 00:37:42 -05:00
Function tstar {n} (a : Tm n) :=
match a with
| VarTm i => a
| Abs a => Abs (tstar a)
| App (Abs a) b => subst_Tm (scons (tstar b) VarTm) (tstar a)
| App (Pair a b) c =>
Pair (App (tstar a) (tstar c)) (App (tstar b) (tstar c))
| App a b => App (tstar a) (tstar b)
| Pair a b => Pair (tstar a) (tstar b)
| Proj p (Pair a b) => if p is PL then (tstar a) else (tstar b)
| Proj p (Abs a) => (Abs (Proj p (tstar a)))
| Proj p a => Proj p (tstar a)
2024-12-24 01:09:02 -05:00
| Pi a b => Pi (tstar a) (tstar b)
2024-12-24 15:31:50 -05:00
| Bot => Bot
2024-12-24 00:37:42 -05:00
end.
Lemma RPar_triangle n (a : Tm n) : forall b, RPar.R a b -> RPar.R b (tstar a).
2024-12-16 18:00:08 -05:00
Proof.
2024-12-24 00:37:42 -05:00
apply tstar_ind => {n a}.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off ctrs:RPar.R inv:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto lq:on rew:off inv:RPar.R ctrs:RPar.R.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
- hauto lq:on inv:RPar.R ctrs:RPar.R.
2024-12-24 01:09:02 -05:00
- hauto lq:on inv:RPar.R ctrs:RPar.R.
2024-12-24 15:31:50 -05:00
- hauto lq:on inv:RPar.R ctrs:RPar.R.
2024-12-24 00:37:42 -05:00
Qed.
2024-12-16 18:00:08 -05:00
2024-12-24 00:37:42 -05:00
Lemma RPar_diamond n (c a1 b1 : Tm n) :
RPar.R c a1 ->
RPar.R c b1 ->
exists d2, RPar.R a1 d2 /\ RPar.R b1 d2.
Proof. hauto l:on use:RPar_triangle. Qed.
2024-12-24 00:52:06 -05:00
Lemma RPar_confluent n (c a1 b1 : Tm n) :
rtc RPar.R c a1 ->
rtc RPar.R c b1 ->
exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2.
Proof.
sfirstorder use:relations.diamond_confluent, RPar_diamond.
Qed.
Lemma EPar_confluent n (c a1 b1 : Tm n) :
rtc EPar.R c a1 ->
rtc EPar.R c b1 ->
exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2.
Proof.
sfirstorder use:relations.diamond_confluent, EPar_diamond.
Qed.
2024-12-24 15:31:50 -05:00
Fixpoint depth_tm {n} (a : Tm n) :=
2024-12-24 01:19:42 -05:00
match a with
2024-12-24 15:31:50 -05:00
| VarTm _ => 1
| Pi A B => 1 + max (depth_tm A) (depth_tm B)
| Abs a => 1 + depth_tm a
| App a b => 1 + max (depth_tm a) (depth_tm b)
| Proj p a => 1 + depth_tm a
| Pair a b => 1 + max (depth_tm a) (depth_tm b)
| Bot => 1
2024-12-24 01:19:42 -05:00
end.
2024-12-24 22:57:28 -05:00
Lemma depth_ren n m (ξ: fin n -> fin m) a :
depth_tm a = depth_tm (ren_Tm ξ a).
Proof.
move : m ξ. elim : n / a; scongruence.
Qed.
Local Ltac prov_tac := sfirstorder use:depth_ren.
#[tactic="prov_tac"]Equations prov {n} (A : Tm n) (B : Tm (S n)) (a : Tm n) : Prop by wf (depth_tm a) lt :=
2024-12-24 15:31:50 -05:00
prov A B (Pi A0 B0) := rtc Par.R A A0 /\ rtc Par.R B B0;
2024-12-24 23:50:02 -05:00
prov A B (Abs a) := prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a;
2024-12-24 15:31:50 -05:00
prov A B (App a b) := prov A B a;
prov A B (Pair a b) := prov A B a /\ prov A B b;
prov A B (Proj p a) := prov A B a;
prov A B Bot := False;
prov A B (VarTm _) := False.
2024-12-25 01:01:59 -05:00
Equations extract {n} (a : Tm n) : Tm n by wf (depth_tm a) lt :=
extract (Pi A B) := Pi A B;
extract (Abs a) := extract (subst_Tm (scons Bot VarTm) a);
extract (App a b) := extract a;
extract (Pair a b) := extract a;
extract (Proj p a) := extract a;
extract Bot := Bot;
extract (VarTm _) := Bot.
Next Obligation.
Admitted.
Next Obligation.
sfirstorder.
Qed.
Next Obligation.
sfirstorder.
Qed.
2024-12-24 22:57:28 -05:00
Lemma tm_depth_ind (P : forall n, Tm n -> Prop) :
(forall n (a : Tm n), (forall m (b : Tm m), depth_tm b < depth_tm a -> P m b) -> P n a) -> forall n a, P n a.
move => ih.
suff : forall m n (a : Tm n), depth_tm a <= m -> P n a by sfirstorder.
elim.
- move => n a h.
apply ih. lia.
- move => n ih0 m a h.
apply : ih.
move => m0 b h0.
apply : ih0.
lia.
2024-12-24 15:31:50 -05:00
Qed.
2024-12-24 22:57:28 -05:00
Lemma prov_ren n m (ξ : fin n -> fin m) A B a :
prov A B a -> prov (ren_Tm ξ A) (ren_Tm (upRen_Tm_Tm ξ) B) (ren_Tm ξ a).
Proof.
2024-12-24 23:50:02 -05:00
move : m ξ A B. elim : n / a.
2024-12-25 00:16:26 -05:00
- sfirstorder rew:db:prov.
2024-12-24 23:50:02 -05:00
- move => n a ih m ξ A B.
simp prov. simpl.
move /ih => {ih}.
move /(_ _ (upRen_Tm_Tm ξ)).
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- qauto l:on rew:db:prov.
- hauto lq:on rew:db:prov.
- move => n A0 ih B0 h0 m ξ A B. simpl.
simp prov.
2024-12-25 00:16:26 -05:00
hauto l:on use:Pars.renaming.
2024-12-24 23:50:02 -05:00
- sfirstorder.
2024-12-25 00:16:26 -05:00
Qed.
Lemma prov_morph n m (ρ : fin n -> Tm m) A B a :
prov A B a ->
prov (subst_Tm ρ A) (subst_Tm (up_Tm_Tm ρ) B) (subst_Tm ρ a).
Proof.
move : m ρ A B. elim : n / a.
- hauto q:on rew:db:prov.
- move => n a ih m ρ A B.
simp prov => /=.
move /ih => {ih}.
move /(_ _ (up_Tm_Tm ρ)). asimpl.
simp prov. by asimpl.
- hauto q:on rew:db:prov.
- hauto q:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto l:on use:Pars.substing rew:db:prov.
- qauto rew:db:prov.
Qed.
2024-12-24 23:50:02 -05:00
Lemma EPar_Par n (a b : Tm n) : EPar.R a b -> Par.R a b.
Proof.
move => h. elim : n a b /h; qauto ctrs:Par.R.
Qed.
2024-12-24 15:31:50 -05:00
2024-12-25 00:16:26 -05:00
Lemma prov_par n (A : Tm n) B a b : prov A B a -> Par.R a b -> prov A B b.
2024-12-24 15:31:50 -05:00
Proof.
move => + h. move : A B.
elim : n a b /h.
2024-12-25 00:16:26 -05:00
- move => n a0 a1 b0 b1 ha iha hb ihb A B /=.
simp prov => h.
have : prov (ren_Tm shift A) (ren_Tm (upRen_Tm_Tm shift) B) a1 by admit.
move /(prov_morph _ _ (scons b1 VarTm)).
by asimpl.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
- hauto lq:on rew:db:prov.
2024-12-24 15:31:50 -05:00
- move => n a0 a1 ha iha A B. simp prov. move /iha.
2024-12-24 23:50:02 -05:00
hauto l:on use:prov_ren.
2024-12-24 15:31:50 -05:00
- hauto l:on rew:db:prov.
- simp prov.
- move => n a0 a1 ha iha A B. simp prov.
2024-12-24 22:57:28 -05:00
- hauto l:on rew:db:prov.
- hauto l:on rew:db:prov.
2024-12-24 23:50:02 -05:00
- hauto lq:on rew:db:prov.
- move => n A0 A1 B0 B1 hA ihA hB ihB A B. simp prov.
move => [hA0 hA1].
eauto using rtc_r.
- sfirstorder.
2024-12-25 00:16:26 -05:00
Admitted.
2024-12-24 15:31:50 -05:00
Lemma prov_pars n (A : Tm n) B a b : prov A B a -> rtc Par.R a b -> prov A B b.
Proof.
induction 2; hauto lq:on use:prov_par.
Qed.
Lemma prov_extract n A B (a : Tm n) :
prov A B a -> exists A0 B0,
extract a = Pi A0 B0 /\ rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
move : A B. elim : n / a => //=.
- move => n a ih A B.
simp prov.
move /ih.
simp extract.
move => [A0][B0][h0][h1]h2.
(* anti renaming for par *)
have : exists A1, rtc Par.R A A1 /\ ren_Tm shift A1 = A0 by admit.
move => [A1 [h3 h4]].
have : exists B1, rtc Par.R B B1 /\ ren_Tm (upRen_Tm_Tm shift) B1 = B0
by admit.
move => [B1 [h5 h6]].
subst.
have {}h0 : extract a = ren_Tm shift (Pi A1 B1) by done.
have : exists a1, extract a1 = Pi A1 B1 /\ ren_Tm shift a1 = a by admit.
move => [a1 [h6 ?]]. subst.
asimpl. exists A1, B1.
repeat split => //=.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- hauto l:on rew:db:prov, extract.
- qauto l:on rew:db:prov, extract.
Admitted.
Lemma pi_inv n (A : Tm n) B C :
rtc Par.R (Pi A B) C ->
exists A0 B0, extract C = Pi A0 B0 /\
rtc Par.R A A0 /\ rtc Par.R B B0.
Proof.
have : prov A B (Pi A B) by sfirstorder.
move : prov_pars. repeat move/[apply].
by move /prov_extract.
Qed.
Lemma pi_inj n (A0 A1 : Tm n) B0 B1 C :
rtc Par.R (Pi A0 B0) C ->
rtc Par.R (Pi A1 B1) C ->
exists A2 B2, rtc Par.R A0 A2 /\ rtc Par.R A1 A2 /\
rtc Par.R B0 B2 /\ rtc Par.R B1 B2.
Proof.
move /pi_inv => [A2 [B2 [? [h0 h1]]]].
move /pi_inv => [A3 [B3 [? [h2 h3]]]].
exists A2, B2. hauto l:on.
Qed.
2024-12-24 00:52:06 -05:00
Lemma Par_confluent n (c a1 b1 : Tm n) :
rtc Par.R c a1 ->
rtc Par.R c b1 ->
exists d2, rtc Par.R a1 d2 /\ rtc Par.R b1 d2.
Proof.
Admitted.