nbe-kripke-racket/nbe.rkt
2025-05-10 00:32:57 -04:00

169 lines
4.8 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang typed/racket
;; Grammar (Λ)
;; t := λ t | app t t | i
(define-type V Nonnegative-Integer)
(define-type Term ( Var Abs App))
(struct Var ([get : V]))
(struct Abs ([body : Term]))
(struct App ([fun : Term] [arg : Term]))
(define-type D ( D-ne Clos))
(struct Idx ([get : V]))
(struct D-ne ([get : ( Idx DApp)]))
(struct Clos ([get : (-> (Promise D) (Promise D))] ))
(struct DApp ([fun : D-ne] [arg : (Promise D)]))
(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D))))
(define (ext ρ a)
(lambda (i)
(if (zero? i)
a
(ρ (- i 1)))))
(: ap (-> (Promise D) (Promise D) D))
(define (ap a b)
(match (force a)
[(Clos f) (force (f b))]
[(D-ne u) (D-ne (DApp (D-ne u) b))]))
;; (define-syntax-rule (ap a b)
;; (match (force a)
;; [`(fun ,f) (force (f b))]
;; [`(neu ,u) `(neu (app ,u ,b))]
;; [_ (error "ap: type error")]))
;; Domain
;; D := neu D_ne | fun [(var -> var) -> D → D]
;; D_ne := var i | app D_ne D
;; (define (tm? a)
;; (match a
;; ['zero true]
;; [`(succ ,a) (tm? a)]
;; [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
;; [`(λ ,a) (tm? a)]
;; [`(app ,a ,b) (and (tm? a) (tm? b))]
;; [`(var ,i) (exact-nonnegative-integer? i)]
;; [_ false]))
;; (define-syntax-rule (ap a b)
;; (match (force a)
;; [`(fun ,f) (force (f b))]
;; [`(neu ,u) `(neu (app ,u ,b))]
;; [_ (error "ap: type error")]))
;; (define-syntax-rule (ifz a b c)
;; (match (force a)
;; ['zero (force b)]
;; [`(succ ,u) (ap c u)]
;; [`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
;; (define-syntax-rule (ext ρ a)
;; (lambda (i)
;; (if (zero? i)
;; a
;; (ρ (- i 1)))))
;; (define-syntax-rule (interp-fun a ρ)
;; (list 'fun (λ (x) (interp a (ext ρ x)))))
;; (: interp (-> Term (-> Term)))
;; (define (interp a ρ)
;; (delay (match a
;; [`(var ,i) (force (ρ i))]
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(interp a ρ))]
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
;; [`(λ ,a) (interp-fun a ρ)]
;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
;; (define (reify n a)
;; (match (force a)
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(reify n a))]
;; [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))]
;; [`(neu ,a) (reify-neu n a)]))
;; (define (extract-body a)
;; (match a
;; [`(λ ,a) a]
;; [_ (error "reify-neu: not reifiable")]))
;; (define (reify-neu n a)
;; (match a
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
;; [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
;; [`(var ,i) (list 'var (- n (+ i 1)))]))
;; (define (idsub s i) `(neu (var ,(- s (+ i 1)))))
;; (define (scope a)
;; (match a
;; ['zero 0]
;; [`(succ ,a) (scope a)]
;; [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
;; [`(λ ,a) (max 0 (- (scope a) 1))]
;; [`(app ,a ,b) (max (scope a) (scope b))]
;; [`(var ,i) (+ i 1)]))
;; (define (normalize a)
;; (let ([sa (scope a)])
;; (reify sa (interp a (curry idsub sa)))))
;; (define (subst ρ a)
;; (match a
;; [`(var ,i) (ρ i)]
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
;; '(var 0)) a))]))
;; (define (idsub-tm i) `(var ,i))
;; (define (subst1 b a)
;; (subst (ext idsub-tm b) a))
;; (define (eval-tm a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm a))]
;; [(list 'app a b)
;; (match (eval-tm a)
;; [(list 'λ a) (eval-tm (subst1 b a))]
;; [v `(app ,v ,(eval-tm b))])]))
;; (define (eval-tm-strict a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
;; [(list 'app a b)
;; (match (eval-tm-strict a)
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
;; [v `(app ,v ,(eval-tm-strict b))])]))
;; ;; Coquand's algorithm but for β-normal forms
;; (define (η-eq? a b)
;; (match (list a b)
;; ['(zero zero) true]
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
;; [`((var ,i) (var ,j)) (eqv? i j)]
;; [_ false]))
;; (define (βη-eq? a b)
;; (η-eq? (normalize a) (normalize b)))
;; (define (β-eq? a b)
;; (equal? (normalize a) (normalize b)))
;; (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)