#lang typed/racket ;; Grammar (Λ) ;; t := λ t | app t t | i (define-type V Nonnegative-Integer) (define-type Term (∪ Var Abs App)) (struct Var ([get : V])) (struct Abs ([body : Term])) (struct App ([fun : Term] [arg : Term])) (define-type D (∪ D-ne Clos)) (struct Idx ([get : V])) (struct D-ne ([get : (∪ Idx DApp)])) (struct Clos ([get : (-> (Promise D) (Promise D))] )) (struct DApp ([fun : D-ne] [arg : (Promise D)])) (: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D)))) (define (ext ρ a) (lambda (i) (if (zero? i) a (ρ (- i 1))))) (: ap (-> (Promise D) (Promise D) D)) (define (ap a b) (match (force a) [(Clos f) (force (f b))] [(D-ne u) (D-ne (DApp (D-ne u) b))])) ;; (define-syntax-rule (ap a b) ;; (match (force a) ;; [`(fun ,f) (force (f b))] ;; [`(neu ,u) `(neu (app ,u ,b))] ;; [_ (error "ap: type error")])) ;; Domain ;; D := neu D_ne | fun [(var -> var) -> D → D] ;; D_ne := var i | app D_ne D ;; (define (tm? a) ;; (match a ;; ['zero true] ;; [`(succ ,a) (tm? a)] ;; [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))] ;; [`(λ ,a) (tm? a)] ;; [`(app ,a ,b) (and (tm? a) (tm? b))] ;; [`(var ,i) (exact-nonnegative-integer? i)] ;; [_ false])) ;; (define-syntax-rule (ap a b) ;; (match (force a) ;; [`(fun ,f) (force (f b))] ;; [`(neu ,u) `(neu (app ,u ,b))] ;; [_ (error "ap: type error")])) ;; (define-syntax-rule (ifz a b c) ;; (match (force a) ;; ['zero (force b)] ;; [`(succ ,u) (ap c u)] ;; [`(neu ,u) `(neu (if-zero ,u ,b ,c))])) ;; (define-syntax-rule (ext ρ a) ;; (lambda (i) ;; (if (zero? i) ;; a ;; (ρ (- i 1))))) ;; (define-syntax-rule (interp-fun a ρ) ;; (list 'fun (λ (x) (interp a (ext ρ x))))) ;; (: interp (-> Term (-> Term))) ;; (define (interp a ρ) ;; (delay (match a ;; [`(var ,i) (force (ρ i))] ;; ['zero 'zero] ;; [`(succ ,a) `(succ ,(interp a ρ))] ;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))] ;; [`(λ ,a) (interp-fun a ρ)] ;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))) ;; (define (reify n a) ;; (match (force a) ;; ['zero 'zero] ;; [`(succ ,a) `(succ ,(reify n a))] ;; [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))] ;; [`(neu ,a) (reify-neu n a)])) ;; (define (extract-body a) ;; (match a ;; [`(λ ,a) a] ;; [_ (error "reify-neu: not reifiable")])) ;; (define (reify-neu n a) ;; (match a ;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))] ;; [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))] ;; [`(var ,i) (list 'var (- n (+ i 1)))])) ;; (define (idsub s i) `(neu (var ,(- s (+ i 1))))) ;; (define (scope a) ;; (match a ;; ['zero 0] ;; [`(succ ,a) (scope a)] ;; [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))] ;; [`(λ ,a) (max 0 (- (scope a) 1))] ;; [`(app ,a ,b) (max (scope a) (scope b))] ;; [`(var ,i) (+ i 1)])) ;; (define (normalize a) ;; (let ([sa (scope a)]) ;; (reify sa (interp a (curry idsub sa))))) ;; (define (subst ρ a) ;; (match a ;; [`(var ,i) (ρ i)] ;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))] ;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ) ;; '(var 0)) a))])) ;; (define (idsub-tm i) `(var ,i)) ;; (define (subst1 b a) ;; (subst (ext idsub-tm b) a)) ;; (define (eval-tm a) ;; (match a ;; [(list 'var _) a] ;; [(list 'λ a) `(λ ,(eval-tm a))] ;; [(list 'app a b) ;; (match (eval-tm a) ;; [(list 'λ a) (eval-tm (subst1 b a))] ;; [v `(app ,v ,(eval-tm b))])])) ;; (define (eval-tm-strict a) ;; (match a ;; [(list 'var _) a] ;; [(list 'λ a) `(λ ,(eval-tm-strict a))] ;; [(list 'app a b) ;; (match (eval-tm-strict a) ;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))] ;; [v `(app ,v ,(eval-tm-strict b))])])) ;; ;; Coquand's algorithm but for β-normal forms ;; (define (η-eq? a b) ;; (match (list a b) ;; ['(zero zero) true] ;; [`((succ ,a) (succ ,b)) (η-eq? a b)] ;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0)) ;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))] ;; [`((λ ,a) (λ ,b)) (η-eq? a b)] ;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))] ;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)] ;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))] ;; [`((var ,i) (var ,j)) (eqv? i j)] ;; [_ false])) ;; (define (βη-eq? a b) ;; (η-eq? (normalize a) (normalize b))) ;; (define (β-eq? a b) ;; (equal? (normalize a) (normalize b))) ;; (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)