Compare commits
No commits in common. "main" and "typed-rkt" have entirely different histories.
4 changed files with 62 additions and 81 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -1 +0,0 @@
|
|||
compiled
|
|
@ -1,4 +1,4 @@
|
|||
# Untyped NbE in Typed Racket
|
||||
# untyped NbE in racket
|
||||
[](https://woodpecker.electriclam.com/repos/4)
|
||||
|
||||
An implementation of normalization by evaluation loosely based on [A
|
||||
|
|
|
@ -83,7 +83,6 @@
|
|||
`(succ ,a))
|
||||
|
||||
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
|
||||
(check βη-eq? `(app ,tm-id (U 0)) '(U 0))
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
|
||||
(check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst)
|
||||
|
@ -92,10 +91,5 @@
|
|||
(check-equal? (normalize (tm-app tm-nat-to-pnat (tm-nat 10))) (tm-pnat 10))
|
||||
(check-equal? (normalize `(ind ,(tm-pnat 3) ,(tm-pnat 0) (var 1))) (tm-pnat 2))
|
||||
(check-equal? (normalize `(ind ,(tm-pnat 3) ,tm-loop (var 1))) (tm-pnat 2))
|
||||
(check-equal? (normalize (tm-padd (tm-pnat 1) '(succ (var 0)))) '(succ (succ (var 0))))
|
||||
(check-equal? (normalize (tm-padd (tm-pnat 10000) (tm-pnat 2000)))
|
||||
(tm-pnat 12000))
|
||||
(check βη-eq? (tm-padd (tm-pnat 10000) (tm-pnat 2000)) (tm-pnat 12000))
|
||||
(check βη-eq? (tm-abs (tm-app (tm-var 1) (tm-var 0))) (tm-app tm-id (tm-var 0)))
|
||||
(check βη-eq? `(Π (U 0) (Π (var 0) ,(tm-app tm-id '(var 1)))) '(Π (U 0) (Π (var 0) (var 1))))
|
||||
(check-false (βη-eq? '(U 0) '(var 0)))
|
||||
|
|
134
nbe.rkt
134
nbe.rkt
|
@ -5,36 +5,33 @@
|
|||
(define-type denv (-> V (Promise D)))
|
||||
(define-type V Nonnegative-Integer)
|
||||
(define-type Term (∪ 'zero
|
||||
'nat
|
||||
(List 'succ Term)
|
||||
(List 'var V)
|
||||
(List 'λ Term)
|
||||
(List 'app Term Term)
|
||||
(List 'ind Term Term Term)
|
||||
(List 'Π Term Term)
|
||||
(List 'U V)))
|
||||
(List 'ind Term Term Term)))
|
||||
|
||||
(define-type D (∪ 'zero
|
||||
(List 'Π (Promise D) (-> (Promise D) D))
|
||||
(List 'succ (Promise D))
|
||||
(List 'fun (-> (Promise D) D))
|
||||
(List 'neu D-ne)
|
||||
(List 'U V)))
|
||||
(List 'neu D-ne)))
|
||||
|
||||
(define-type D-ne (∪ (List 'app D-ne D)
|
||||
(List 'idx V)
|
||||
(List 'ind D-ne D (-> (Promise D) (Promise D) D))))
|
||||
|
||||
(: ext (All (A) (-> (-> V A) A (-> V A))))
|
||||
(: ext (-> denv (Promise D) denv))
|
||||
(define (ext ρ a)
|
||||
(lambda (i)
|
||||
(if (zero? i)
|
||||
a
|
||||
(ρ (- i 1)))))
|
||||
|
||||
(: interp-fun (-> Term denv (-> (Promise D) D)))
|
||||
|
||||
|
||||
(: interp-fun (-> Term denv D))
|
||||
(define (interp-fun a ρ)
|
||||
(λ (x) (interp a (ext ρ x))))
|
||||
(list 'fun (λ (x) (interp a (ext ρ x)))))
|
||||
|
||||
(: interp-fun2 (-> Term denv (-> (Promise D) (Promise D) D)))
|
||||
(define (interp-fun2 a ρ)
|
||||
|
@ -45,21 +42,19 @@
|
|||
(match a
|
||||
[`(neu ,u) `(neu (ind ,u ,(force b) ,c))]
|
||||
['zero (force b)]
|
||||
[`(succ ,a) (c a (delay (interp-ind (force a) b c)))]
|
||||
[_ (error "type-error: ind")]))
|
||||
[`(succ ,a) (c a (delay (interp-ind (force a) b c)))]))
|
||||
|
||||
(: ap (-> Term Term denv D))
|
||||
(: ap (-> D Term denv D))
|
||||
(define (ap a b ρ)
|
||||
(match (interp a ρ)
|
||||
(match a
|
||||
['zero (error "type-error: ap zero")]
|
||||
[`(succ ,_) (error "type-error: ap succ")]
|
||||
[`(fun ,f) (f (delay (interp b ρ)))]
|
||||
[`(neu ,u) `(neu (app ,u ,(interp b ρ)))]
|
||||
[_ (error "type-error: ap")]))
|
||||
[`(neu ,u) `(neu (app ,u ,(interp b ρ)))]))
|
||||
|
||||
(: interp (-> Term denv D))
|
||||
(define (interp a ρ)
|
||||
(match a
|
||||
[`(U ,_) a]
|
||||
[`(Π ,A ,B) `(Π ,(delay (interp A ρ)) ,(interp-fun B ρ))]
|
||||
[`(var ,i) (force (ρ i))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(delay (interp a ρ)))]
|
||||
|
@ -67,26 +62,17 @@
|
|||
(interp a ρ)
|
||||
(delay (interp b ρ))
|
||||
(interp-fun2 c ρ))]
|
||||
[`(λ ,a) (list 'fun (interp-fun a ρ))]
|
||||
[`(app ,a ,b) (ap a b ρ)]))
|
||||
[`(λ ,a) (interp-fun a ρ)]
|
||||
[`(app ,a ,b) (ap (interp a ρ) b ρ)]))
|
||||
|
||||
(: reify (-> V D Term))
|
||||
(define (reify n a)
|
||||
(match a
|
||||
[`(Π ,A ,B) `(Π ,(reify n (force A)) ,(reify (+ n 1) (B (delay `(neu (idx ,n))))))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(reify n (force a)))]
|
||||
[`(U ,_) a]
|
||||
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
|
||||
[`(neu ,a) (reify-neu n a)]))
|
||||
|
||||
(: var-to-idx (-> V V V))
|
||||
(define (var-to-idx s v)
|
||||
(let ([ret (- s (+ v 1))])
|
||||
(if (< ret 0)
|
||||
(error "variable to index conversion failed")
|
||||
ret)))
|
||||
|
||||
(: reify-neu (-> V D-ne Term))
|
||||
(define (reify-neu n a)
|
||||
(match a
|
||||
|
@ -97,16 +83,14 @@
|
|||
(c (delay `(neu (idx ,n)))
|
||||
(delay `(neu (idx ,(+ 1 n)))))))]
|
||||
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
|
||||
[`(idx ,i) (list 'var (var-to-idx n i))]))
|
||||
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
|
||||
|
||||
(: idsub (-> V V D))
|
||||
(define (idsub s i) `(neu (idx ,(var-to-idx s i))))
|
||||
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
|
||||
|
||||
(: scope (-> Term V))
|
||||
(define (scope a)
|
||||
(match a
|
||||
[`(Π ,A ,B) (max (scope A) (- (scope B) 2))]
|
||||
[`(U ,_) 0]
|
||||
['zero 0]
|
||||
[`(succ ,a) (scope a)]
|
||||
(`(ind ,a ,b ,c) (max (scope a) (scope b) (- (scope c) 2)))
|
||||
|
@ -120,52 +104,56 @@
|
|||
(let ([sa (scope a)])
|
||||
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
|
||||
|
||||
(: up (-> V (-> V Term) (-> V Term)))
|
||||
(define (up n ρ)
|
||||
(ext (λ ([x : V]) (subst (λ (i) `(var ,(+ i n))) (ρ x))) '(var 0)))
|
||||
;; (define (subst ρ a)
|
||||
;; (match a
|
||||
;; [`(var ,i) (ρ i)]
|
||||
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
|
||||
;; '(var 0)) a))]))
|
||||
|
||||
(: subst (-> (-> V Term) Term Term))
|
||||
(define (subst ρ a)
|
||||
(match a
|
||||
[`(U ,_) a]
|
||||
[`(Π ,A ,B) `(Π ,(subst ρ A) ,(subst (up 1 ρ) B))]
|
||||
[`(var ,i) (ρ i)]
|
||||
[`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||||
[`(λ ,a) `(λ ,(subst (up 1 ρ) a))]
|
||||
['zero 'zero]
|
||||
[`(succ ,a) `(succ ,(subst ρ a))]
|
||||
[`(ind ,a ,b ,c) `(ind ,(subst ρ a) ,(subst ρ b) ,(subst (up 2 ρ) c))]))
|
||||
;; (define (idsub-tm i) `(var ,i))
|
||||
;; (define (subst1 b a)
|
||||
;; (subst (ext idsub-tm b) a))
|
||||
|
||||
(: idsub-tm (-> V Term))
|
||||
(define (idsub-tm i) `(var ,i))
|
||||
(: subst1 (-> Term Term Term))
|
||||
(define (subst1 b a)
|
||||
(subst (ext idsub-tm b) a))
|
||||
;; (define (eval-tm a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm a)
|
||||
;; [(list 'λ a) (eval-tm (subst1 b a))]
|
||||
;; [v `(app ,v ,(eval-tm b))])]))
|
||||
|
||||
;; Coquand's algorithm but for β-normal forms
|
||||
(: η-eq? (-> Term Term Boolean))
|
||||
(define (η-eq? a b)
|
||||
(match (list a b)
|
||||
[`((U ,i) (U ,j)) (eqv? i j) ]
|
||||
[`((Π ,A0 ,B0) (Π ,A1 ,B1))
|
||||
(and (η-eq? A0 A1) (η-eq? B0 B1))]
|
||||
['(zero zero) true]
|
||||
[`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
[`((ind ,a ,b ,c) (ind ,a0 ,b0 ,c0))
|
||||
(and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
[`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
[`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
[`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
[`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
[`((var ,i) (var ,j)) (eqv? i j)]
|
||||
[_ false]))
|
||||
;; (define (eval-tm-strict a)
|
||||
;; (match a
|
||||
;; [(list 'var _) a]
|
||||
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
|
||||
;; [(list 'app a b)
|
||||
;; (match (eval-tm-strict a)
|
||||
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
|
||||
;; [v `(app ,v ,(eval-tm-strict b))])]))
|
||||
|
||||
(: βη-eq? (-> Term Term Boolean))
|
||||
(define (βη-eq? a b)
|
||||
(η-eq? (normalize a) (normalize b)))
|
||||
;; ;; Coquand's algorithm but for β-normal forms
|
||||
;; (: η-eq? (-> Term Term Boolean))
|
||||
;; (define (η-eq? a b)
|
||||
;; (match (list a b)
|
||||
;; ['(zero zero) true]
|
||||
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||||
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||||
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||||
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||||
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||||
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||||
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||||
;; [`((var ,i) (var ,j)) (eqv? i j)]
|
||||
;; [_ false]))
|
||||
|
||||
|
||||
;; (define (βη-eq? a b)
|
||||
;; (η-eq? (normalize a) (normalize b)))
|
||||
|
||||
(: β-eq? (-> Term Term Boolean))
|
||||
(define (β-eq? a b)
|
||||
(equal? (normalize a) (normalize b)))
|
||||
|
||||
(provide reify interp normalize β-eq? Term D V βη-eq?)
|
||||
(provide reify interp normalize β-eq? Term D V)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue