nbe-kripke-racket/nbe.rkt
2025-05-12 00:48:47 -04:00

159 lines
4.8 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang typed/racket
;; Grammar (Λ)
;; t := λ t | app t t | i
(define-type denv (-> V (Promise D)))
(define-type V Nonnegative-Integer)
(define-type Term ( 'zero
(List 'succ Term)
(List 'var V)
(List 'λ Term)
(List 'app Term Term)
(List 'ind Term Term Term)))
(define-type D ( 'zero
(List 'succ (Promise D))
(List 'fun (-> (Promise D) D))
(List 'neu D-ne)))
(define-type D-ne ( (List 'app D-ne D)
(List 'idx V)
(List 'ind D-ne D (-> (Promise D) (Promise D) D))))
(: ext (-> denv (Promise D) denv))
(define (ext ρ a)
(lambda (i)
(if (zero? i)
a
(ρ (- i 1)))))
(: interp-fun (-> Term denv D))
(define (interp-fun a ρ)
(list 'fun (λ (x) (interp a (ext ρ x)))))
(: interp-fun2 (-> Term denv (-> (Promise D) (Promise D) D)))
(define (interp-fun2 a ρ)
(λ (x y) (interp a (ext (ext ρ x) y))))
(: interp-ind (-> D (Promise D) (-> (Promise D) (Promise D) D) D))
(define (interp-ind a b c)
(match a
[`(neu ,u) `(neu (ind ,u ,(force b) ,c))]
['zero (force b)]
[`(succ ,a) (c a (delay (interp-ind (force a) b c)))]))
(: ap (-> D Term denv D))
(define (ap a b ρ)
(match a
['zero (error "type-error: ap zero")]
[`(succ ,_) (error "type-error: ap succ")]
[`(fun ,f) (f (delay (interp b ρ)))]
[`(neu ,u) `(neu (app ,u ,(interp b ρ)))]))
(: interp (-> Term denv D))
(define (interp a ρ)
(match a
[`(var ,i) (force (ρ i))]
['zero 'zero]
[`(succ ,a) `(succ ,(delay (interp a ρ)))]
[`(ind ,a ,b ,c) (interp-ind
(interp a ρ)
(delay (interp b ρ))
(interp-fun2 c ρ))]
[`(λ ,a) (interp-fun a ρ)]
[`(app ,a ,b) (ap (interp a ρ) b ρ)]))
(: reify (-> V D Term))
(define (reify n a)
(match a
['zero 'zero]
[`(succ ,a) `(succ ,(reify n (force a)))]
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
[`(neu ,a) (reify-neu n a)]))
(: reify-neu (-> V D-ne Term))
(define (reify-neu n a)
(match a
[`(ind ,a ,b ,c) (list 'ind
(reify-neu n a)
(reify n b)
(reify (+ n 2)
(c (delay `(neu (idx ,n)))
(delay `(neu (idx ,(+ 1 n)))))))]
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
(: idsub (-> V V D))
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
(: scope (-> Term V))
(define (scope a)
(match a
['zero 0]
[`(succ ,a) (scope a)]
(`(ind ,a ,b ,c) (max (scope a) (scope b) (- (scope c) 2)))
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
[`(λ ,a) (max 0 (- (scope a) 1))]
[`(app ,a ,b) (max (scope a) (scope b))]
[`(var ,i) (+ i 1)]))
(: normalize (-> Term Term))
(define (normalize a)
(let ([sa (scope a)])
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
;; (define (subst ρ a)
;; (match a
;; [`(var ,i) (ρ i)]
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
;; '(var 0)) a))]))
;; (define (idsub-tm i) `(var ,i))
;; (define (subst1 b a)
;; (subst (ext idsub-tm b) a))
;; (define (eval-tm a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm a))]
;; [(list 'app a b)
;; (match (eval-tm a)
;; [(list 'λ a) (eval-tm (subst1 b a))]
;; [v `(app ,v ,(eval-tm b))])]))
;; (define (eval-tm-strict a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
;; [(list 'app a b)
;; (match (eval-tm-strict a)
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
;; [v `(app ,v ,(eval-tm-strict b))])]))
;; ;; Coquand's algorithm but for β-normal forms
;; (: η-eq? (-> Term Term Boolean))
;; (define (η-eq? a b)
;; (match (list a b)
;; ['(zero zero) true]
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
;; [`((var ,i) (var ,j)) (eqv? i j)]
;; [_ false]))
;; (define (βη-eq? a b)
;; (η-eq? (normalize a) (normalize b)))
(: β-eq? (-> Term Term Boolean))
(define (β-eq? a b)
(equal? (normalize a) (normalize b)))
(provide reify interp normalize β-eq? Term D V)